
©2024 GeMRTOS. All rights reserved.
ALTERA, ARRIA, CYCLONE, HARDCOPY, INTEL, MAX, STATRIX, MEGACORE, NIOS, QUARTUS
and PLATFORM DESIGNER are trademarks of Intel Corporation.
 All other words and logos identified as trademarks or service marks are the property of their
respective holders.

GeMRTOS: Multiprocessor RTOS

Reference Design

Date: September 09, 2024

Revision 1

Background
This design exemplifies the straightforward and efficient use of GeMRTOS in the implementation
of multiprocessor systems on Intel FPGA devices. GeMRTOS is provided as an IP component
that integrates seamlessly with Intel's Platform Designer, functioning as an easily accessible
library component.
With GeMRTOS, the process of creating a multiprocessor RTOS mirrors the simplicity of
traditional single-processor design flows. The system supports both Nios II and Nios V soft-
processors, which can be conveniently selected from the Platform Designer's parameter
configuration interface for the GeMRTOS component.
The multiprocessor architecture of GeMRTOS enhances the performance of embedded
applications while simultaneously reducing the time required during the design phase.
Moreover, it simplifies maintenance by allowing implementations to be conceptualized as
modular subsystems—a particularly valuable feature given the complexity of modern
applications.
As FPGA capacities continue to increase, the design of multiprocessor systems on a single chip
becomes increasingly feasible. Intel’s design tools, combined with GeMRTOS, enable the
benefits of embedded multiprocessor systems to be realized without the associated
complexities.

Objectives
• Create a multiprocessor GeMRTOS system by defining the number of Nios II or Nios V

soft-processors as a parameter in Intel’s Platform Designer GUI.
• Develop an embedded application that demonstrates task execution across different

processors.
• Demonstrate that the design flow of a GeMRTOS multiprocessor application is similar to

that of designing a uniprocessor application in Intel’s Platform Designer.

System Architecture
The proposed reference design is centered around the GeMRTOS Multiprocessor IP. The system
is completed by adding the following components:

• PLL Component: GeMRTOS supports different clocks for processors and system
devices. To enhance system performance, the processors are configured to run at 25
MHz, while the system bus clock is set to 100 MHz.

• Memory component or memory controller: The system includes memory to store
applications.

The system architecture resembles that of a uniprocessor system based on the Nios II or Nios V
soft-processor, with the GeMRTOS controller replacing the processor. Additionally, the
architecture is simplified as it does not require a timer device or the JTAG UART typically found
in Altera's soft-processor examples.

The GeMRTOS multiprocessor IP component includes optional JTAG UARTs for STDIO and
STDERR consoles, which the user may choose to enable through the parameter configuration
GUI. It also provides a JTAG UART for each processor, which can be enabled and may be found
useful for debugging purposes. Additionally, it features a conduit port for easy management of

LEDs and switches on most development FPGA boards. The GeMRTOS multiprocessor IP
component is designed to simplify the complex task of multiprocessor design.

Figure 1 demonstrates the proposed design architecture.

Figure 1: reference design hardware architecture.

The software architecture of GeMRTOS allows applications to be configured as a set of tasks
assigned to hybrid scheduling lists. GeMRTOS employs an innovative hybrid partitioned
scheduling approach that leverages these lists to optimize task execution across multiple
processors. Tasks are assigned to scheduling lists either statically or dynamically, and
processors are allocated to one or more of these lists. This flexible configuration supports the
partial implementation of partitioned/semi-global scheduling, ensuring that processors do not
remain idle when tasks are available in their assigned scheduling lists. Figure 2 demonstrates
how tasks and processors can be allocated using the GeMRTOS hybrid scheduling list.

Figure 2. GeMRTOS hybrid scheduling.

Management of tasks, resources, and scheduling algorithms is easily implemented due to the
flexible multiprocessor architecture of GeMRTOS.

GeMRTOS Multiprocessor IP component
The GeMRTOS Multiprocessor IP component simplifies the design of multiprocessor systems by
reducing the complexity of processor booting, synchronization, and mutual exclusion, making it
as straightforward to design a multiprocessor system as it is to design a uniprocessor system.

As shown in Figure 3, the structure of the GeMRTOS Multiprocessor IP includes the following
components:

• The GeMRTOS controller: This serves as the core of the GeMRTOS Multiprocessor IP
component, responsible for time management and external events, and enabling the
gemrtos Avalon-conduit port for easy access to external signals.

• The System Processor: The IP component supports Nios II and Nios V soft-processors
in various versions and parametrizations.

• The MM-Avalon bridge for external devices: This bridge allows for the definition of
different clock sources for processors and external devices, thereby enabling clock
domain adaptation to improve overall performance.

• The JTAG-UART devices: These devices can be enabled for STDIO and STDERR
consoles, as well as for each system processor, which simplifies design and facilitates
system debugging.

• The MM-Avalon bridge for HPS interface: This allows access to and from the HPS
domain memory map, though deep knowledge is required for effective use.

Figure 3: GeMRTOS multiprocessor internal structure.

Overall, the GeMRTOS Multiprocessor IP component significantly reduces the challenges
associated with designing complex multiprocessor systems, thereby streamlining the
development process and improving efficiency.

GeMRTOS design flow
Designing a multiprocessor system with GeMRTOS closely resembles the process of designing a
uniprocessor system.

The first step involves designing the hardware architecture, followed by the creation of the
software application.

Designing the GeMRTOS multiprocessor hardware architecture.

Designing the GeMRTOS multiprocessor hardware architecture involves modifying an SOPC
design tailored to a specific development kit. Development kits typically offer example
configurations that include all necessary components, making it advantageous to start with one
of these examples. This approach eliminates the need to manually configure the kit board's
pinouts, especially for components like the DDR memory controller, if available. GeMRTOS
reference design projects for various boards, such as the DE2-115, MAX10 FPGA, Bemicro SDK,
can be asked for on gemrtos.com.

Step 1: Create a folder for your GeMRTOS project
First, create a folder and copy the base Quartus Prime project into it. This folder will be
referenced as <Quartus_Prime_project_folder>. The folder must include the following files to
create a valid Intel’s Platform Designer project:

• <quartus_project_name>.qpf: This file contains all the information about the files that
constitute the project and must be opened when the project is launched in Quartus
Prime.

• <quartus_project_name>.qsf: This file contains all the project settings. It is supplied by
the board manufacturer and includes the names assigned to each pin associated with
the components in the development kit.

• <top_level_entity_file>.v or .vhd: This file contains the hardware description of the top
level entity to be implemented on the FPGA device. It mainly instantiates the embedded
system created with Intel’s Platform Designer, which will include the GeMRTOS IP
component.

If the project is based on a demonstration example provided by the kit or board manufacturer,
the GeMRTOS IP component should be added to the project for instantiation in the Intel’s
Platform Designer tool. If the project is obtained from gemrtos.com, proceed to Step 2.

Installing GeMRTOS into the project
The GeMRTOS IP component is fully compatible with Intel’s Platform Designer. To
include the GeMRTOS IP component in the project, copy the /ip subfolder into the
<Quartus_Prime_project_folder>. The GeMRTOS IP subfolder can be obtained by
downloading the GeMRTOS IP compressed file from the provided link.

The basic structure of the <Quartus_Prime_project_folder> should resemble the one shown in
Figure 4.

https://gemrtos.com/gemrtos_manual/DE2_115.zip
https://gemrtos.com/gemrtos_manual/MAX10FPGA.zip
https://gemrtos.com/gemrtos_manual/bemicroSDK.zip
https://gemrtos.com/download/
https://gemrtos.com/gemrtos_manual/GeMRTOS_ip.zip

Figure 4: GeMRTOS basic project directory structure.

It is essential to verify that all necessary files are correctly placed within the
<Quartus_Prime_project_folder>. This ensures a seamless integration of the GeMRTOS IP
component during subsequent steps. Proper organization and verification at this stage will
facilitate efficient project development and minimize potential errors during the hardware
design process.

Step 2: Licensing GeMRTOS
GeMRTOS requires a license to be used in Intel’s Platform Designer. A valid license can be
downloaded from the provided link. Quartus Prime supports both Fixed and Floating licenses,
and the appropriate option must be selected based on the current licensing type of Quartus
Prime. The Fixed license can be easily configured by browsing to the license file through the
License Setup window (Tools → License Setup…). Figure 5 illustrates the configuration of the
Fixed license option.

Figure 5: GeMRTOS fixed license setting.

It is crucial to verify that the GeMRTOS license has been correctly configured within Intel’s
Quartus Prime. Ensuring proper license configuration is essential for the smooth operation of
GeMRTOS and for avoiding potential issues during project compilation. Once the license setup
is confirmed, the GeMRTOS IP component will be fully operational within the Quartus Prime
environment, allowing for seamless integration and further development of the multiprocessor

https://gemrtos.com/license/

system.

Step 3: Open Quartus Prime project
Opening the project file containing all relevant design files and settings is necessary to initiate
the hardware design process. The project located in the <Quartus_Prime_project_folder>
directory should be opened by selecting “File → Open Project…” as shown in Figure 6, and then
proceeding with the subsequent steps provided in the software interface.

Figure 6: Opening Quartus Prime Project.

After opening the project file, it is essential to verify that all design files and settings have been
correctly loaded. This ensures that the Quartus Prime environment is properly configured for the
subsequent stages of hardware development. Any discrepancies in file loading or settings may
result in errors during synthesis or implementation, which can affect the overall design process.
Therefore, a thorough review of the project setup at this stage is crucial to achieving accurate
and efficient design outcomes.

Step 4: Open the Intel’s Platform Designer project
The Intel’s Platform Designer tool is essential for designing the embedded system that includes
the GeMRTOS multiprocessor system. To begin, open Intel’s Platform Designer by selecting
“Tools → Platform Designer” as shown in Figure 7.

Figure 7: Opening Intel’s Platform Designer tool.

Executing this option opens the Intel’s Platform Designer GUI. Before starting, choose the
<platform_designer_file>.qsys file that contains the embedded system. This file should be

located in the <Quartus_Prime_project_folder>. Once selected, the Intel’s Platform Designer
GUI will be available, as illustrated in Figure 8.

Figure 8: Intel’s Platform Designer GUI.

Intel’s Platform Designer enables the straightforward design of the GeMRTOS multiprocessor-
based system. The GeMRTOS Multiprocessor component is accessible in the IP Catalog tab,
and the System Contents tab displays all elements of the GeMRTOS multiprocessor system, as
shown in Figure 1.

Step 5: Add the GeMRTOS Multiprocessor component
Next, the GeMRTOS Multiprocessor component must be added to the system, which can be
configured with either a Nios II or a Nios V processor. To do this, navigate to Project → GeMRTOS
→ GeMRTOS Multiprocessor within the IP Catalog tab and click the Add button. Figure 9 shows
the GeMRTOS parameter configuration panel, which appears when the GeMRTOS
Multiprocessor component is added or selected in the System Component window. This panel
allows for configuring several features of the final multiprocessor architecture.

Figure 9: GeMRTOS Multiprocessor parameter configuration.

Successfully adding and configuring the GeMRTOS Multiprocessor component in Intel’s
Platform Designer is a critical step in designing a functional multiprocessor system. This step
ensures that the GeMRTOS IP component is properly integrated with the selected processor
(Nios II or Nios V), allowing for further configuration and refinement of the multiprocessor
architecture. Ensuring each feature is correctly set at this stage will contribute to the system’s
overall performance and functionality during implementation.

Configuring the GeMRTOS hardware parameters
When the GeMRTOS Multiprocessor component is added or double-clicked within Intel’s
Platform Designer, the Parameters tab becomes accessible. This tab allows for the
configuration of various hardware parameters critical to the GeMRTOS Multiprocessor
component. The primary parameters available for configuration include the following:

• Number of Processors: Specifies the number of processors to be included in the
system. The GeMRTOS Multiprocessor component manages all internal configurations
to accommodate the selected number of processors.

• Processor Type: Determines the type of processor used in the system. GeMRTOS
supports both Nios II and Nios V soft-processors in various versions, and the processor
type can be easily selected from the available options.

• Reset Vector Memory: Identifies the memory device that contains the reset vector for
the multiprocessor system. The list of memory devices is populated based on the
devices connected to the GeMRTOS Multiprocessor buses, and no devices will appear
until the component is connected, similar to the behavior in uniprocessor systems using
Nios II or Nios V processors.

• Reset Vector Offset: Specifies the offset of the reset vector within the chosen reset
vector memory device.

• Exception Vector Memory (only for Nios II): Similar to Reset Vector Memory, but
specifically for the exception vector. This parameter is only applicable to Nios II
processors.

• Exception Vector Offset (only for Nios II): Specifies the offset of the exception vector
within the chosen exception vector memory device, applicable only to Nios II
processors.

• Instruction Cache Size: Defines the size of the instruction cache, applicable only to
processors that support this feature.

• Enable Pipeline in CPU (Nios V/m only): Indicates whether the pipeline stage is
enabled when using the Nios V processor.

• Independent External Processor Buses: Determines whether each processor has a
separate external bus or if a single external bus is shared among all processors in the
GeMRTOS Multiprocessor component. Independent external buses can be beneficial for
shadowing external devices at the same memory map address for each processor,
potentially improving performance in certain applications.

• Include JTAG UART for STDIO: If enabled, a JTAG UART is included as the standard
input/output (STDIO) interface for the system.

• Include JTAG UART for STDERR: If enabled, a JTAG UART is included as the standard
error (STDERR) interface for the system.

• Include JTAG UART for Each Processor: If enabled, a JTAG UART is included for each
processor, allowing all processors to access each JTAG UART, which can be useful for
debugging purposes.

• Enable HPS Internal Access: If enabled, an Avalon bridge is included to allow the HPS
system to access the GeMRTOS Multiprocessor bus and all its internal devices.

• Quartus Prime Project Name: Allows the selection of the Quartus Prime project
available in the work directory. Setting this field configures the gemrtos_build script for
easy building of the SOPC system.

• Platform Designer Project Name: Allows the selection of the Intel’s Platform Designer
project available in the work directory. Setting this field configures the gemrtos_build
script for easy building of the SOPC system.

These parameters must be carefully configured to ensure the GeMRTOS Multiprocessor
component operates as intended within the overall system design.

Step 6: Design the Intel’s Platform Designer system
As with uniprocessor systems based on Nios II or Nios V processors, the remaining components
in the system must be added and interconnected. If the "Independent External Processor
Buses" option is enabled, each processor bus must be connected to the appropriate devices.
Memory devices should be connected before selecting the Reset and Exception Vector
Memory, as valid options are derived from the memory devices attached to the bus of the
processor with an ID equal to 1. Figure 10 provides an example of how the 10 processor buses of
the GeMRTOS Multiprocessor-based system are connected to a 34404-byte on-chip memory in
a DE2-115 board to store the entire application. Additionally, the GeMRTOS Multiprocessor

buses are connected to the PLL device, and they can be connected to any other component in
the system.

Figure 10: GeMRTOS Multiprocessor conections.

Similar to Nios II or Nios V processors, interrupt signals must be connected to the
gemrtos_dirq_input port of the GeMRTOS Multiprocessor component. The GeMRTOS
Multiprocessor component significantly simplifies the design of multiprocessor systems in
much the same way as uniprocessor designs. It helps manage complexities such as exclusion
components, boot synchronization, interrupt management, system time management, and
processor identification.

Step 7: Build the Intel’s Platform Designer system and compile the Quartus
Prime project
Once the design is complete, the system should be generated in Intel’s Platform Designer, and
the GeMRTOS Multiprocessor component should be instantiated in the Quartus Prime project.
This step is necessary for compiling the final hardware configuration for the FPGA board. The
component in the Quartus Prime project may also need modifications to include conduit ports
added by the GeMRTOS Multiprocessor component. These modifications are straightforward if
the new signals are incorporated in a manner similar to the existing ones in the project.

Upon completion of all steps, a .sof or .pof file will be generated to program the FPGA device.
After generating the system in Intel’s Platform Designer, a .sopcinfo file is created, containing
all the necessary information to generate the BSP project (Board Support Package), which
serves as the software layer supporting the user application.

Figure 11 illustrates the layout of the hardware creation flow, following the design methodology
proposed by Intel/Altera for implementing embedded SOPC systems on FPGA devices. This flow
outlines the step-by-step process involved in configuring and designing hardware components,
using tools such as Quartus Prime and Intel’s Platform Designer to integrate various elements,
including the GeMRTOS Multiprocessor system, into the FPGA architecture.

Figure 11: Quartus Prime / Platform Designer design flow.

The software creation flow is detailed in the next section and follows a process similar to that
for uniprocessor systems based on Nios II or Nios V processors.

Designing the GeMRTOS multiprocessor software application.
Building the software application for a GeMRTOS Multiprocessor system closely follows the flow
established for Nios II and Nios V processors. The process relies on the BSP project, which
contains the necessary device drivers for all components included in the Intel’s Platform
Designer project. The configuration of these devices is based on the information provided in the
.sopcinfo file generated during the Intel’s Platform Designer process. This file consolidates all
the relevant details about the devices connected to the system, ensuring the software layer is
correctly aligned with the hardware design. The software layer, shown in Figure 12, contains
both the BSP project and the Application project.

Figure 12: GeMRTOS software layer containing the BSP and Application projects.

The software building flow consists of several steps, each carried out by executing specific
commands in the correct order. These commands must be executed in different environments,
depending on the processor selected in the GeMRTOS Multiprocessor component. If the Nios II
processor is chosen, the commands should be run in the Nios II Command Shell, while the Nios
V Command Shell should be used when Nios V is selected as the Processor Type (see Figure
13).

Figure 13: Quartus Prime / Platform Designer design flow.

Note: The Nios II Command Shell requires a Linux-like environment. Earlier versions of Quartus
Prime utilized the Cygwin environment to execute these commands. However, Quartus Prime
versions later than 22.0 now use the Windows Subsystem for Linux (WSL) command-line
environment. The procedures for installing Quartus Prime version 22.0 and configuring WSL for
the GeMRTOS design flow on Windows 10-64bit systems are detailed here.

Alternative 1: Building the application with the gemrtos_build script.
To simplify the software building flow, the GeMRTOS Multiprocessor component generates the
gemrtos_build script (.sh for Nios II processors and .bat for Nios V processors). This script
automates the essential steps for building a GeMRTOS application, reducing the complexity of
manual configuration and improving efficiency, especially for those new to GeMRTOS and Intel’s
design flow. The script should be executed from the command line of the Nios II or Nios V
Command Shell within the <Quartus_Prime_project_folder> directory:

• for Nios II, the command is:

<Quartus_Prime_project_folder>/bash gemrtos_build.sh

• for Nios V, the command is:

<Quartus_Prime_project_folder>/gemrtos_build.bat

The gemrtos_build script performs several key operations, configured with parameters from the
GeMRTOS Multiprocessor component’s parameter panel:

• Platform Designer Project Name: Specifies the Platform Designer project file (.qsys)
located in the Quartus Prime project’s main directory (<Quartus_Prime_project_folder>).

• Quartus Prime Project Name: Identifies the Quartus Prime project where the Platform
Designer project, containing the GeMRTOS IP component, is instantiated.

• Application Project Name: Determines the name of the application executed by the
GeMRTOS multiprocessor. By default, the hellogemrtos project is created in the
<Quartus_Prime_project_folder> /software subdirectory.

• BSP Project Name: Defines the name of the Board Support Package (BSP) associated
with the application, stored in the <Quartus_Prime_project_folder> /software
/hellogemrtos_bsp subdirectory.

The execution of the gemrtos_build script involves the following steps:

1. Generate the Intel’s Platform Designer system.

2. Compile the Quartus Prime project, creating the <quartus_project_name>.sof file.

3. Generate the BSP settings file (.bsp) and BSP project directory.

4. Set up the software directory and, if absent, include the hellogemrtos.c template file.

5. Compile both BSP and application projects, producing the hellogemrtos.elf file.

6. Transfer the .sof file to the FPGA using the Quartus Prime Programmer tool.

7. Open terminals to connect with the system's JTAG UARTs.

https://gemrtos.com/gemrtosdocs/installation-of-quartus-prime-with-wsl-1-for-gemrtos-design-flow/

8. Download and initiate execution of the hellogemrtos.elf on the target hardware.

Upon completion, the multiprocessor application will begin executing on the GeMRTOS
Multiprocessor system, with system and task messages displayed in the connected terminals.

Alternative 2: Executing all the steps to create the software application.
The gemrtos_build script offers a convenient way to start working with SOPC in FPGA devices
and is even simpler than building uniprocessor systems based on Nios II or Nios V processors.
The script also accepts command-line options to override default settings. However, for users
who wish to control each step of the process, the entire building flow can be executed manually
via a sequence of commands in the chosen processor’s Command Shell.

Note: In this approach, the commands to generate the Intel’s Platform Designer system and
compile the Quartus Prime hardware project—performed using graphical interfaces in the
previous Section (Designing the GeMRTOS multiprocessor hardware)—are included as
command-line functions for completeness. These steps are also integrated into the
gemrtos_build script to fully automate the design flow.

Step 1: Update the IP cores of the Intel’s Platform Designer project
It is recommended to update the IP cores used in the Intel’s Platform Designer project to the
latest version. This can be done by running the following command:

• for Nios II:

qsys-generate.exe <Platform_Designer_project_name>.qsys --upgrade-ip-cores

• for Nios V:

%QSYS_ROOTDIR%/qsys-generate <Platform_Designer_project_name>.qsys --

upgrade-ip-cores

Note: %QSYS_ROOTDIR% is an environment variable that specifies the directory where the
Intel’s Platform Designer tools are installed.

This step is usually performed when opening a project in Intel’s Platform Designer, especially if
the project was created using a previous version of the tool. If the components are already
updated, no action is required.

The gemrtos_build script performs this command automatically based on the project name
specified in the "Platform Designer project name" parameter of the GeMRTOS Multiprocessor
component configuration panel. To override this value, use the -qsys option:

• For Nios II

bash gemrtos_built.sh -qsys <Platform_Designer_project_name>

• For Nios V

gemrtos_built.bat -qsys <Platform_Designer_project_name>

Step 2: Generate the Intel’s Platform Designer project
This step generates the Intel’s Platform Designer system, producing files for synthesis and the
.sopcinfo file. This can be achieved by executing the following command:

• for Nios II:

qsys-generate.exe <Platform_Designer_project_name>.qsys --synthesis=VERILOG

• for Nios V:

%QSYS_ROOTDIR%/qsys-generate <Platform_Designer_project_name>.qsys --

synthesis=VERILOG

Note: This command performs the same action as clicking the "Generate HDL" button in Intel’s
Platform Designer. The gemrtos_build script also handles this step automatically, but the
project name can be overridden using the -qsys option.

Step 3: Compile the Quartus Prime project
If the Intel’s Platform Designer or Quartus Prime project files have been modified, a full
compilation of the generated hardware is required. The following command will perform this:

• For both Nios II and Nios V:

quartus_cmd.exe <Quartus_Prime_Project_Name>.qpf -c

<Quartus_Prime_Project_Name>.qsf

Note: The gemrtos_build script uses the project name specified in the "Quartus Prime Project
Name" parameter of the GeMRTOS Multiprocessor component’s configuration panel. To
override this, use the -qpr option:

• For Nios II:

bash gemrtos_build.sh -qpr <Quartus_Prime_Project_Name>

• For Nios V
gemrtos_build.bat -qpr <Quartus_Prime_Project_Name>

This step compiles the entire hardware project and may take some time to complete. It is
recommended to execute this step, along with Step 1 and Step 2, only when the Intel’s Platform
Designer or Quartus Prime project files have been modified.

Step 4: Generate the BSP settings file
The BSP project contains the software support package for the hardware. It retrieves hardware
information from the .sopcinfo file and includes the device drivers for all components in the
Intel’s Platform Designer project. The following commands generate the BSP project:

• For Nios II:

nios2-bsp hal ./<BSP_sub_folder> <Platform_Designer_project_name>.sopcinfo

--cpu-name <GeMRTOS_Multiprocessor_component_name>_gemrtos_proc_1 -–

cmd="set_setting hal.enable_reduced_device_drivers true"

• For Nios V

niosv-bsp -c --sopcinfo=<Platform_Designer_project_name>.sopcinfo --

type=hal -i=<GeMRTOS_Multiprocessor_component_name>_gemrtos_proc_1 -–

cmd="set_setting hal.enable_reduced_device_drivers true"

<BSP_sub_folder>/settings.bsp

where:

<BSP_sub_folder> is the destination folder for the BSP project, which by default is located in the
./software subdirectory.

< Platform_Designer_project_name> refers to the name of the Intel’s Platform Designer project.

<GeMRTOS_Multiprocessor_component_name> is the name assigned to the GeMRTOS
Multiprocessor component in the Intel’s Platform Designer project (by default, this is set to
“GeMRTOS_Multiprocessor_0”).

Executing this command creates or updates the settings.bsp file within the BSP project folder.
The BSP project is configured with the processor that has an ID equal to 1 as the reference for
the project.

Note: The BSP project is created similarly to a uniprocessor BSP project, but with the added
requirement of specifying the reference processor in a multiprocessor system. By default, the
processor with ID 1 is used as the reference.

If it is wanted to get the correct arguments, it can be executed:

for Nios II:

qsys-script.exe --system-file< Platform_Designer_project_name>qsys --

script=./ip/GeMRTOS_Multiprocessor/qsysscript.tcl

for Nios V:

%QSYS_ROOTDIR%/qsys-script.exe --system-file<

Platform_Designer_project_name>qsys --

script=./ip/GeMRTOS_Multiprocessor/qsysscript.tcl

This command will produce the command line to execute according the configuration of the
system.

Step 5: Generate the Application project
The application project references the BSP project and contains application files, including the
main function. The project can be generated using the following commands:

• For Nios II:

nios2-app-generate-makefile.exe --bsp-dir ./ <BSP_sub_folder> --app-dir

./<Application_folder> --elf-name <Application_name>.elf --set

APP_CFLAGS_USER_FLAGS \"-Wa,-relax-all\" --inc-rdir ./ <Application_folder>

--src-rdir ./ <Application_folder>

• For Nios V:

niosv-app --app-dir=<Application_folder> --srcs=<Application_folder> --

bsp-dir=<BSP_sub_folder>

Note: GeMRTOS provides the hellogemrtos.c file, which can be used as a starting program. This
file is located in the ./ip/GeMRTOS_Multiprocessor folder.

Step 6: Compile the projects and generate the .elf file
The BSP and application projects must be compiled separately for Nios II. For Nios V, the
process is different, as shown below:

• For Nios II:

cd <BSP_sub_folder>

make all

cd <Quartus_Prime_project_folder>

cd <Application_folder>

make all

• For Nios V:

cmake -G "Unix Makefiles" -B <Application_folder> -S <Application_folder>

make -C <Application_folder>

The compilation process produces the .elf file, which is used to program the application onto
the FPGA.

Step 7: Program the FPGA device
Programming the FPGA can be done using the Quartus Prime Programmer tool or by running the
following command:

quartus_pgm.exe -m JTAG -o "p;output_files/<Quartus_Prime_Project_Name>.

sof"

For devices where the FPGA configuration is second in the programming chain, use:

quartus_pgm.exe -m JTAG -o "p;output_files/<Quartus_Prime_Project_Name>.

sof@2"

Note: After successful execution, the FPGA will be configured with the hardware architecture.
The system’s processors and JTAG UARTs can be verified by running:

jtagconfig.exe -n

showing the processors and JTAG UARTs accessible through the JTAG interface:

1) USB-Blaster [USB-0]

 020F30DD 10CL025(Y|Z)/EP3C25/EP4CE22

 Design hash 0CBAE831A5A1AE5AA13C

 + Node 19104600 Nios II #0

 + Node 19104601 Nios II #1

 + Node 19104602 Nios II #2

 + Node 0C006E00 JTAG UART #0

 + Node 0C006E01 JTAG UART #1

 + Node 0C206E00 JTAG PHY #0

 + Node 0C006E02 JTAG UART #2

Step 8: Download the application
The application can be downloaded and started with the following commands:

• For Nios II:

nios2-download --go -r ./<Application_folder>/<Application_name>.elf --

instance=0

• For Nios V:

niosv-download -g -i 0 <Application_folder>/<Application_name>.elf

Upon execution of this command, the application is downloaded to the system and begins
running. If messages are sent to the JTAG UART, the application will pause and wait for a
terminal connection to proceed. Therefore, it is necessary to connect as many terminals as
there are JTAG UART devices in the system. The following commands are used to establish
terminal connections:

• For Nios II:

cmd.exe /c start nios2-terminal.exe -v --flush --no-quit-on-ctrl-d --

instance=<instance>

• For Nios V:

cmd.exe /c start juart-terminal.exe -v --flush --no-quit-on-ctrl-d --

instance=<instance>

Here, <instance> ranges from 0 up to the total number of JTAG UART devices in the system
minus 1.

By following these steps, users have full control over the software build process, allowing them
to customize and fine-tune each phase of the GeMRTOS multiprocessor application
development.

Getting a Multiprocessor system running: the easiest
way.
GeMRTOS simplifies the process of setting up a multiprocessor system on Intel FPGA devices
through its automated design flow, making it particularly convenient for those new to GeMRTOS.
This straightforward approach ensures a smooth initial experience by automating much of the
setup, allowing users to quickly familiarize themselves with GeMRTOS and its capabilities. To
get started, follow these steps:

1. Obtain a Quartus Prime project with an SOPC project tailored for your board, using
either the Nios II or Nios V soft-processor.

2. Download, unzip, and copy the GeMRTOS component into the /ip subfolder of the
Quartus Prime project.

3. Verify that the GeMRTOS license is correctly configured.
4. Open the Quartus Prime project in Quartus Prime.
5. Launch the SOPC project using Intel’s Platform Designer tool.
6. Replace the Nios II or Nios V processor with the GeMRTOS Multiprocessor component.
7. Connect buses and interrupts as they were with the soft-processor.
8. Configure the parameters of the GeMRTOS Multiprocessor component.
9. Check and adjust the top-level design if necessary due to SOPC interface modifications.
10. Save and exit the Intel Platform Designer tool.
11. Save and exit Quartus Prime.
12. Run the gemrtos_build script in the Command Shell.
13. Enjoy your Multiprocessor System!

Note: By default, the gemrtos_build script generates two projects: hellogemrtos and
hellogemrtos_bsp, located in the /software subdirectory of the <Quartus_Prime_Project_Name>
directory. The hellogemrtos project includes a template C code file named hellogemrtos.c,
providing a basic starting point for a GeMRTOS application. Modify this file to fit your project's
specific requirements.

Welcome to the GeMRTOS world!!!

