

GeMRTOS: Multiprocessor RTOS

API reference

Date: October 30, 2024

Revision: 1.0

Contents
GeMRTOS API Functions categories .. 1

Critical Section category .. 1

Frozen Mode category .. 1

IRQ Management category ... 1

Message Queue category ... 2

Processor category .. 2

Scheduling List category .. 3

Semaphore category .. 3

Signal category .. 4

System category .. 4

Task category ... 4

Trigger category .. 5

GeMRTOS Control Blocks definitions .. 5

GeMRTOS Enumeration definitions ... 6

GeMRTOS Functions .. 6

gm_GeMRTOSCriticalSectionEnter ... 6

gm_GeMRTOSCriticalSectionExit .. 6

gm_GeMRTOSCriticalSectionGrantedTime .. 7

gm_FrozenModeDisable ... 7

gm_FrozenModeEnable .. 7

gm_FrozenModeThresholdGet ... 8

gm_FrozenModeThresholdSet ... 8

gm_FrozenModeTimeGet .. 9

gm_IrqDisable .. 9

gm_IrqEnable ... 9

gm_IrqStatusGet .. 10

gu_MessageQueueCreate ... 10

gu_MessageQueuePrintf ... 11

gu_MessageQueueReceive ... 11

gu_MessageQueueSend ... 12

gu_MessageQueueSubscribe .. 12

gm_ProcessorHalt .. 13

gm_ProcessorId ... 13

gm_ProcessorInterrupt ... 14

gm_ProcessorInterruptDisable ... 14

gm_ProcessorInterruptEnable... 14

gm_ProcessorWaitForIrq... 15

gm_SchedulingListExclusionSectionEnter ... 15

gm_SchedulingListExclusionSectionExit ... 16

gu_SchedulingListAssociateProcessor .. 16

gu_SchedulingListAssociateTask ... 17

gu_SchedulingListCreate .. 17

gu_SchedulingListExclusionSet .. 18

gu_SemaphoreCreate ... 18

gu_SemaphorePost .. 19

gu_SemaphoreWait .. 19

gu_SignalCreate ... 20

gu_SignalDestroy .. 21

gm_SystemTimePrescaleGet .. 21

gm_SystemTimePrescaleSet ... 21

gm_SystemTotalTimeGet .. 22

gm_WriteOutputs ... 22

gu_fprintf ... 22

gu_printf .. 23

gu_TaskCreate .. 23

gu_TaskDelay ... 24

gu_TaskDelayTime .. 24

gu_TaskGetCurrentTCB ... 25

gu_TaskKill ... 25

gu_TaskPeriodSet ... 26

gu_TaskReadyPrioritySet ... 26

gu_TaskResume ... 27

gu_TaskRunPrioritySet .. 27

gu_TaskStartWithOffset .. 28

gu_TaskSuspend .. 28

gu_TaskTypeSet .. 29

gu_TriggerCreate .. 29

gu_TriggerDisable ... 29

gu_TriggerDisableHook ... 30

gu_TriggerEnable .. 31

gu_TriggerEnableHook .. 31

gu_TriggerRegisterTask .. 32

gu_TriggerRelease .. 32

gu_TriggerWait .. 33

GeMRTOS Control Blocks ... 33

struct g_rcb .. 33

struct T_QUEUE_RESOURCE .. 34

struct gs_ecb .. 34

struct gs_tcb .. 34

struct gs_lcb .. 36

struct T_SEMAPHORE_RESOURCE .. 36

struct gs_scb .. 37

GeMRTOS Enumerations types ... 37

enum lcbtype ... 37

enum scbtype .. 37

enum tcbtype ... 38

GEMRTOS: Multiprocessor RTOS – Reference Design - 1

GeMRTOS API Functions categories

Critical Section category
The Critical Section category in GeMRTOS provides essential macros for protecting shared data
structures during concurrent task execution. These macros are specifically designed to manage
access to GeMRTOS data structures, ensuring that operations on shared resources are executed
atomically to prevent race conditions and maintain data integrity. Proper implementation of these
critical section macros is crucial for protecting GeMRTOS-specific data structures from unexpected
behaviors that may arise from simultaneous access by multiple tasks or processors. This category
empowers developers to create secure and efficient real-time applications by ensuring that critical
operations on data structures are performed without interruption or conflict.
gm_GeMRTOSCriticalSectionEnter
gm_GeMRTOSCriticalSectionExit
gm_GeMRTOSCriticalSectionGrantedTime

Frozen Mode category
The Frozen Mode category in GeMRTOS includes functions and macros that manage system
behavior during critical operational states. This mode allows the system to temporarily suspend
certain tasks and processes to preserve resources and maintain stability under specific conditions.
By entering Frozen Mode, developers can prevent unwanted interruptions and manage timing more
effectively, particularly in scenarios that require precise timing or resource allocation. Functions
related to Frozen Mode enable the configuration of thresholds and control mechanisms, allowing
for efficient activation and deactivation of this mode as needed. This capability is essential for
optimizing performance and ensuring system reliability in real-time applications.
gm_FrozenModeDisable
gm_FrozenModeEnable
gm_FrozenModeThresholdGet
gm_FrozenModeThresholdSet
gm_FrozenModeTimeGet

IRQ Management category
The IRQ Management category in GeMRTOS encompasses functions and macros designed to
handle interrupt requests (IRQs) efficiently within the real-time operating system. This category
provides essential tools for enabling, disabling, and managing interrupts, allowing tasks to respond
promptly to external events and system signals. Effective IRQ management is crucial for optimizing
system performance, as it facilitates the prioritization of tasks and ensures that critical events are

GEMRTOS: Multiprocessor RTOS – Reference Design - 2

addressed in a timely manner.
gm_IrqDisable
gm_IrqEnable
gm_IrqStatusGet

Message Queue category
The Message Queue category in GeMRTOS provides essential functions and macros for
implementing inter-task communication through message passing mechanisms. This category
enables tasks to exchange data and synchronize their operations efficiently, facilitating seamless
collaboration within a real-time system.
By utilizing the Message Queue category, developers can create, send, and receive messages
between tasks, allowing for asynchronous communication that enhances system responsiveness.
The functions within this category support various operations, including message queue creation,
message enqueuing and dequeuing to ensure robust data exchange.
With the capability to configure message priorities and handling, the Message Queue category not
only streamlines communication but also aids in managing task dependencies and resource
sharing. This is particularly important in complex applications where timely and reliable message
transfer is critical. By ensuring effective inter-task communication, the Message Queue category
plays a vital role in optimizing performance and contributing to the overall reliability of the
GeMRTOS environment.
gu_MessageQueueCreate
gu_MessageQueuePrintf
gu_MessageQueueReceive
gu_MessageQueueSend
gu_MessageQueueSubscribe

Processor category
The Processor category in GeMRTOS includes functions and macros that provide critical tools for
managing processor-level operations and configurations within the real-time operating system. This
category facilitates the control of individual processors, allowing developers to optimize task
scheduling, interrupt handling, and overall system performance. Functions in this category enable
manipulation of processor states, including halting, resuming, and managing processor interrupts,
as well as retrieving processor-specific information. The Processor category is essential for
developing robust real-time applications that require precise control over processing resources,
promoting responsiveness, and achieving effective synchronization between tasks and hardware
components.
gm_ProcessorHalt
gm_ProcessorId
gm_ProcessorInterrupt
gm_ProcessorInterruptDisable
gm_ProcessorInterruptEnable

GEMRTOS: Multiprocessor RTOS – Reference Design - 3

gm_ProcessorWaitForIrq

Scheduling List category
The Scheduling List category in GeMRTOS encompasses functions and macros designed to
facilitate the management and manipulation of hybrid scheduling lists within the real-time
operating system. These tools provide essential data structure capabilities that allow developers to
create, modify, and traverse collections of tasks efficiently, enabling dynamic and flexible
scheduling approaches.
By using the Scheduling List category functions, developers can implement effective algorithms for
task prioritization, resource allocation, and event handling, all while maintaining high performance
and minimal overhead. The functions within this category support various operations such as
adding and removing tasks, adjusting priorities, and specifying scheduling criteria. Notably, the
configuration of scheduling list exclusions can help prevent real-time anomalies, ensuring that
critical tasks receive the attention they need while balancing processor loads effectively.
Integration of the Scheduling List category into real-time applications enhances task organization
and scheduling efficiency, enabling the system to respond rapidly to changes in workload and
processor availability. This capability is critical for applications where timing, responsiveness, and
resource management are paramount.
gm_SchedulingListExclusionSectionEnter
gm_SchedulingListExclusionSectionExit
gu_SchedulingListAssociateProcessor
gu_SchedulingListAssociateTask
gu_SchedulingListCreate
gu_SchedulingListExclusionSet

Semaphore category
The Semaphore category in GeMRTOS encompasses functions and macros designed to facilitate
synchronization and resource management among concurrent tasks within the real-time operating
system. Semaphores are essential for controlling access to shared resources, preventing race
conditions, and ensuring data integrity by regulating how tasks interact with one another.
By utilizing the Semaphore category, developers can create and manage both binary and counting
semaphores, allowing for fine-grained control over task execution and resource allocation. The
functions within this category enable operations such as semaphore creation, and waiting,
effectively coordinating task activities and synchronizing their behavior.
The use of semaphores is crucial in environments where multiple tasks need to access shared
resources without conflict, as it helps maintain system stability and performance. Additionally, by
leveraging semaphores, developers can enhance the efficiency of their applications, ensuring that
critical tasks are executed in a timely manner while preventing task starvation and optimizing
resource utilization.
gu_SemaphoreCreate
gu_SemaphorePost

GEMRTOS: Multiprocessor RTOS – Reference Design - 4

gu_SemaphoreWait

Signal category
The Signal category in GeMRTOS provides essential functions and macros for implementing event-
driven synchronization mechanisms between tasks within the real-time operating system. Signals
serve as lightweight notification tools that allow tasks to communicate important state changes,
alerts, or operational events efficiently.
By utilizing the Signal category, developers can create and manage signals that facilitate
asynchronous task coordination, enabling tasks to respond promptly to specific events without
polling or constant checking. Functions within this category support operations such as signal
creation, allowing tasks to seamlessly be notified when critical actions need to take place.
gu_SignalCreate
gu_SignalDestroy

System category
The System category in GeMRTOS encompasses critical functions and macros that provide core
capabilities for managing and configuring the operating environment. This category is vital for
overseeing system-level operations, resource management, and overall application behavior within
the real-time operating system.
By utilizing the System category, developers can access functions that facilitate system
initialization, configuration of kernel parameters, and management of system states.
gm_SystemTimePrescaleGet
gm_SystemTimePrescaleSet
gm_SystemTotalTimeGet
gm_WriteOutputs
gu_fprintf
gu_printf

Task category
The Task category in GeMRTOS includes essential functions and macros for creating, managing,
and scheduling tasks within the real-time operating system. This category is fundamental for
implementing multitasking, allowing applications to perform multiple operations concurrently and
efficiently utilize system resources.
By leveraging the Task category, developers can create tasks with specified priority levels, resource
requirements, and execution parameters, enabling fine control over how tasks are executed and
scheduled. Functions within this category support a wide range of operations, including task
creation, and suspension, as well as priority management.
The flexibility offered by the Task category supports responsive applications that can adapt to

GEMRTOS: Multiprocessor RTOS – Reference Design - 5

dynamic conditions in real-time environments. The Task category is crucial for building robust,
efficient, and responsive applications in the GeMRTOS ecosystem, facilitating the seamless
management of concurrent operations in complex real-time systems.
gu_TaskCreate
gu_TaskDelay
gu_TaskDelayTime
gu_TaskGetCurrentTCB
gu_TaskKill
gu_TaskPeriodSet
gu_TaskReadyPrioritySet
gu_TaskResume
gu_TaskRunPrioritySet
gu_TaskStartWithOffset
gu_TaskSuspend
gu_TaskTypeSet

Trigger category
The Trigger category in GeMRTOS encompasses functions and macros that facilitate event-driven
mechanisms within the real-time operating system. These functions enable tasks to respond to
specific events, interrupts, or conditions, enhancing the system's interactivity and responsiveness.
Triggers play a crucial role in synchronization, allowing tasks to be activated based on the
occurrence of defined events, thereby optimizing resource utilization and improving overall system
efficiency.
gu_TriggerCreate
gu_TriggerDisable
gu_TriggerDisableHook
gu_TriggerEnable
gu_TriggerEnableHook
gu_TriggerRegisterTask
gu_TriggerRelease
gu_TriggerWait

GeMRTOS Control Blocks definitions

struct g_rcb
struct T_QUEUE_RESOURCE
struct gs_ecb
struct gs_tcb
struct gs_lcb
struct T_SEMAPHORE_RESOURCE

GEMRTOS: Multiprocessor RTOS – Reference Design - 6

struct gs_scb

GeMRTOS Enumeration definitions

enum lcbtype
enum scbtype
enum tcbtype

GeMRTOS Functions

gm_GeMRTOSCriticalSectionEnter
Prototype

 gm_GeMRTOSCriticalSectionEnter;
Description

The gm_GeMRTOSCriticalSectionEnter macro defines the entry point into a critical section for the
management of kernel data. It is designed to ensure that modifications to shared kernel resources
occur safely, although it may be interrupted while waiting for the GeMRTOS controller mutex. This
macro should be utilized whenever there is a need to modify kernel data to prevent data corruption
and maintain system stability.
Parameters

The gm_GeMRTOSCriticalSectionEnter macro does not accept any parameters.
Returns

The gm_GeMRTOSCriticalSectionEnter macro does not return any value but blocks the code
execution until the GeMRTOS controller mutex is granted.
See also
gm_GeMRTOSCriticalSectionExit, gm_GeMRTOSCriticalSectionGrantedTime, gm_IrqDisable,
gm_IrqEnable, gm_ProcessorInterrupt, gm_ProcessorWaitForIrq

gm_GeMRTOSCriticalSectionExit
Prototype

 gm_GeMRTOSCriticalSectionExit;
Description

The gm_GeMRTOSCriticalSectionExit macro exits the critical section from the current processor,
allowing other processes enter. It is essential to use this macro in all user functions that execute
kernel functions or modify kernel data, ensuring that the critical section is properly released and
preventing potential deadlocks or resource contention.
Parameters

The gm_GeMRTOSCriticalSectionExit macro does not accept any parameters.

GEMRTOS: Multiprocessor RTOS – Reference Design - 7

Returns
The gm_GeMRTOSCriticalSectionExit macro does not return any value.

See also
gm_GeMRTOSCriticalSectionEnter, gm_GeMRTOSCriticalSectionGrantedTime, gm_IrqDisable,
gm_IrqEnable, gm_ProcessorInterrupt, gm_ProcessorWaitForIrq

gm_GeMRTOSCriticalSectionGrantedTime
Prototype

 gm_GeMRTOSCriticalSectionGrantedTime;
Description

The gm_GeMRTOSCriticalSectionGrantedTime macro returns the time the mutex was granted in
system time units.
Parameters

The gm_GeMRTOSCriticalSectionGrantedTime macro does not accept any parameters.
Returns

The gm_GeMRTOSCriticalSectionGrantedTime macro returns the time the mutex was granted in
system time units.
See also
gm_GeMRTOSCriticalSectionEnter, gm_GeMRTOSCriticalSectionExit

gm_FrozenModeDisable
Prototype

 gm_FrozenModeDisable;
Description

The gm_FrozenModeDisable macro disables the frozen mode event. By default, the frozen mode
starts in a disabled state.
Parameters

The gm_FrozenModeDisable macro does not accept any parameters.
Returns

The gm_FrozenModeDisable macro does not return any value.
See also
gm_FrozenModeEnable, gm_FrozenModeThresholdGet, gm_FrozenModeThresholdSet,
gm_FrozenModeTimeGet, gm_ProcessorInterrupt, gm_ProcessorWaitForIrq

gm_FrozenModeEnable
Prototype

 gm_FrozenModeEnable;
Description

The gm_FrozenModeEnable macro enables the frozen mode event. By default, the frozen mode
starts in a disabled state. Before invoking this macro, ensure that the frozen threshold is properly
configured using the gm_FrozenModeThresholdSet function.

GEMRTOS: Multiprocessor RTOS – Reference Design - 8

Parameters
The gm_FrozenModeEnable macro does not accept any parameters.

Returns
The gm_FrozenModeEnable macro does not return any value.

See also
gm_FrozenModeDisable, gm_FrozenModeThresholdGet, gm_FrozenModeThresholdSet,
gm_FrozenModeTimeGet, gm_ProcessorInterrupt, gm_ProcessorWaitForIrq

gm_FrozenModeThresholdGet
Prototype

 TIMEPRIORITY interval = gm_FrozenModeThresholdGet;
Description

The gm_FrozenModeThresholdGet macro retrieves the value of the Frozen Time Threshold register
from the GeMRTOS controller (R_FRZ_TM_THR). By default, the frozen mode is disabled, and the
frozen threshold is set to zero. This macro is useful for determining the current threshold value,
which is critical for managing the activation of frozen mode.
Parameters

The gm_FrozenModeThresholdGet macro does not accept any parameters
Returns

The gm_FrozenModeThresholdGet macro returns the current value of the Frozen Time Threshold
register in the GeMRTOS controller.
See also
gm_FrozenModeDisable, gm_FrozenModeEnable, gm_FrozenModeThresholdSet,
gm_FrozenModeTimeGet, gm_ProcessorInterrupt, gm_ProcessorWaitForIrq

gm_FrozenModeThresholdSet
Prototype

 gm_FrozenModeThresholdSet(timeset);
Description

The gm_FrozenModeThresholdSet macro sets the value of the Frozen Time Threshold register in
the GeMRTOS controller. By default, the frozen mode is disabled, and the frozen threshold is
initialized to zero. This macro is essential for configuring the threshold that determines when the
frozen mode becomes active when it is enabled.
Parameters

The gm_FrozenModeThresholdSet macro accepts the following parameter:
• timeset:The frozen threshold value specified in system ticks units. This value establishes

the interval of delay in processing timed events after which the frozen mode will be triggered
when frozen mode is enabled.

Returns
The gm_FrozenModeThresholdSet macro does not return any value.

GEMRTOS: Multiprocessor RTOS – Reference Design - 9

See also
gm_FrozenModeDisable, gm_FrozenModeEnable, gm_FrozenModeThresholdGet,
gm_FrozenModeTimeGet, gm_ProcessorInterrupt, gm_ProcessorWaitForIrq

gm_FrozenModeTimeGet
Prototype

 G_INT64 time = gm_FrozenModeTimeGet;
Description

gm_FrozenModeTimeGet returns the accumulated time the system was in Frozen Mode. This time
is hold in the R_FRZ_CNT register of the GeMRTOS controller.
Parameters

The gm_FrozenModeTimeGet macro has no parameter.
Returns

The gm_FrozenModeTimeGet macro returns the accumulated time the system was in Frozen
Mode, hold in the the R_FRZ_CNT register of the GeMRTOS controller.
See also
gm_FrozenModeDisable, gm_FrozenModeEnable, gm_FrozenModeThresholdGet,
gm_FrozenModeThresholdSet

gm_IrqDisable
Prototype

 gm_IrqDisable(irq);
Description

The gm_IrqDisable macro disables the specified device interrupt request event (IRQ) in the
GeMRTOS controller. This macro is essential for managing interrupt handling and preventing
specified DIRQs from triggering.
Parameters

The gm_IrqDisable macro accepts the following parameter:
• irq:The number of the IRQ to be disabled.

Returns
The gm_IrqDisable macro does not return any value.

See also
gm_IrqEnable, gm_IrqStatusGet, gm_ProcessorInterrupt, gm_ProcessorWaitForIrq

gm_IrqEnable
Prototype

 gm_IrqEnable(irq);
Description

The gm_IrqEnable macro enables the specified device interrupt request event (DIRQ) in the
GeMRTOS controller. This macro is crucial for allowing specified DIRQ to trigger.

GEMRTOS: Multiprocessor RTOS – Reference Design - 10

Parameters
The gm_IrqEnable macro accepts the following parameter:

• irq:The number of the DIRQ to be enabled.

Returns
The gm_IrqEnable macro does not return any value.

See also
gm_IrqDisable, gm_IrqStatusGet, gm_ProcessorInterrupt, gm_ProcessorWaitForIrq

gm_IrqStatusGet
Prototype

 G_INT32 status = gm_IrqStatusGet;
Description

The gm_IrqStatusGet macro retrieves the current DIRQ status from the GeMRTOS controller. It
reflects the value of the input signals from the device IRQ inputs, prior to the application of any
enabling logic. This macro is useful for determining which interrupt requests are currently active.
Parameters

The gm_IrqStatusGet macro does not accept any parameters.
Returns

The macro returns the status of the DIRQ register of the GeMRTOS controller.
See also
gm_IrqDisable, gm_IrqEnable, gm_ProcessorInterrupt, gm_ProcessorWaitForIrq

gu_MessageQueueCreate
Prototype

 G_RCB *gu_MessageQueueCreate(void);
Description

The gu_MessageQueueCreate function creates a new message queue resource. This resource is
implemented using a G_RCB structure, extended with fields from a T_QUEUE_RESOURCE
structure. The created queue includes event lists for producers (waiting to send) and consumers
(waiting to receive) messages. Producer tasks add themselves to the producer event list when they
are waiting to send a message. This function can be called from either the main application code or
from within a task. If called within a task, it must be called before any message send or receive
operations; otherwise, an error will occur.
Parameters

The gu_MessageQueueCreate function takes no parameters.
Returns

The gu_MessageQueueCreate function returns a pointer (G_RCB *) to the newly created message
queue resource. This pointer is essential for all subsequent operations on the queue. A NULL
pointer is returned if there is insufficient memory to create the queue or if no more queue resources
are available.
See also
gu_MessageQueuePrintf, gu_MessageQueueReceive, gu_MessageQueueSend,
gu_MessageQueueSubscribe

GEMRTOS: Multiprocessor RTOS – Reference Design - 11

gu_MessageQueuePrintf
Prototype

 int gu_MessageQueuePrintf(G_RCB *prcb, char *format, ...);
Description

The gu_MessageQueuePrintf function sends a formatted message to a message queue. The calling
task will block until the message is successfully delivered to all consumers subscribed to the
queue.
Parameters

The function accepts the following parameters:
• prcb: A pointer to the G_RCB structure representing the message queue. This pointer is the

value returned by gu_MessageQueueCreate when the queue was created.

• format: A null-terminated string containing the format string, similar to the standard printf
function. This string can include format specifiers (e.g., d, s, x) that are replaced by
subsequent arguments.

Returns
The function returns G_TRUE if the message was successfully sent to the queue, and G_FALSE

otherwise.
See also
gu_MessageQueueCreate, gu_MessageQueueReceive, gu_MessageQueueSend,
gu_MessageQueueSubscribe

gu_MessageQueueReceive
Prototype

 int gu_MessageQueueReceive(G_RCB *prcb, void *buffer_msg, G_INT32 buffer_length);
Description

The gu_MessageQueueReceive function retrieves the next message from a message queue. The
calling task must have previously subscribed to the queue using gu_MessageQueueSubscribe. The
received message is copied into the buffer specified by buffer_msg. If the message is larger than
buffer_length, it will be truncated to fit the buffer.
Parameters

The function takes three parameters:
• prcb: A pointer to the G_RCB structure of the message queue from which to receive the

message.

• buffer_msg: A pointer to the memory buffer where the received message will be stored.

• buffer_length: An integer specifying the maximum number of bytes to receive. This should
be equal to or greater than the size of the buffer_msg buffer.

GEMRTOS: Multiprocessor RTOS – Reference Design - 12

Returns
The gu_MessageQueueReceive function returns an integer representing the number of bytes

actually received. This value may be less than buffer_length if the received message was shorter
than the buffer or if the message was truncated due to buffer size limitations.
See also
gu_MessageQueueCreate, gu_MessageQueuePrintf, gu_MessageQueueSend,
gu_MessageQueueSubscribe

gu_MessageQueueSend
Prototype

 int gu_MessageQueueSend(G_RCB *prcb, char *pmsg, int msg_length, gt_time timeout);
Description

The gu_MessageQueueSend function transmits a message to a message queue. The sending task
blocks until the message has been successfully delivered to all subscribed consumers or until a
timeout occurs.
Parameters

The function uses the following parameters:
• prcb: A pointer to the G_RCB structure representing the message queue resource. This

pointer was returned by gu_MessageQueueCreate when the queue was created.

• pmsg: A pointer to the message data to be sent

• msg_length: An integer representing the length of the message to be sent, in bytes.

• timeout: A gt_time value specifying the timeout period for sending the message.

Returns
The gu_MessageQueueSend function returns G_TRUE if the message was successfully sent within

the timeout period, and G_FALSE otherwise. G_FALSE indicates either a timeout or another error
condition.
See also
gu_MessageQueueCreate, gu_MessageQueuePrintf, gu_MessageQueueReceive,
gu_MessageQueueSubscribe

gu_MessageQueueSubscribe
Prototype

 GS_ECB *gu_MessageQueueSubscribe(GS_TCB *ptcb, G_RCB *presource);
Description

The gu_MessageQueueSubscribe function subscribes the task to a message queue resource. This
subscription is crucial for message delivery; a consumer task must be subscribed to a queue
before it can receive messages using gu_MessageQueueReceive. Furthermore, the execution of this
function for each receiving task allows the message queue to track the number of consumers
subscribed. This count is essential for producers; a producer message is only considered fully

GEMRTOS: Multiprocessor RTOS – Reference Design - 13

delivered when it has been received by every subscribed consumer. The message queue must have
been previously created using gu_MessageQueueCreate.
Parameters

The function uses the following parameters:
• ptcb: A pointer to the Task Control Block (GS_TCB) of the task being subscribed to the

queue.

• presource: A pointer to the G_RCB structure representing the message queue resource to
which the task is subscribing.

Returns
The gu_MessageQueueSubscribe function returns a pointer to the GS_ECB structure associated

with the message queue resource. A NULL return value likely indicates an error.
See also
gu_MessageQueueCreate, gu_MessageQueuePrintf, gu_MessageQueueReceive,
gu_MessageQueueSend

gm_ProcessorHalt
Prototype

 gm_ProcessorHalt;
Description

The gm_ProcessorHalt macro places the processor into halt mode, effectively stopping its
execution until an interrupt is issued for this processor by the GeMRTOS controller. This mode is
often used to conserve power or to wait for external events before resuming normal operation.
Parameters

The gm_ProcessorHalt macro does not require any parameters.
Returns

The gm_ProcessorHalt macro returns control to the calling function when the processor is
interrupted and the ISR routine executed, allowing it to resume execution.
See also
gm_ProcessorId, gm_ProcessorInterrupt, gm_ProcessorInterruptDisable,
gm_ProcessorInterruptEnable, gm_ProcessorWaitForIrq

gm_ProcessorId
Prototype

 G_INT32 prcID = gm_ProcessorId;
Description

The gm_ProcessorId macro retrieves the ID of the current processor. This macro is useful for
identifying the processor.
Parameters

The gm_ProcessorId macro does not accept any parameters.
Returns

The gm_ProcessorId macro returns the ID of the current processor.

GEMRTOS: Multiprocessor RTOS – Reference Design - 14

See also
gm_ProcessorHalt, gm_ProcessorInterrupt, gm_ProcessorInterruptDisable,
gm_ProcessorInterruptEnable, gm_ProcessorWaitForIrq

gm_ProcessorInterrupt
Prototype

 gm_ProcessorInterrupt(proc);
Description

gm_ProcessorInterrupt issues an interrupt for the processor with the specified ID and waits until it
reaches the ISR and disables its interrupt in the GeMRTOS controller.
Parameters

The gm_ProcessorInterrupt macro accepts the following parameter:
• proc:The ID of the processor to be interrupted. This specifies which processor will receive

the interrupt signal.

Returns
The gm_ProcessorInterrupt macro returns when the target processor disables its interrupt in the

GeMRTOS controller.
See also
gm_ProcessorHalt, gm_ProcessorId, gm_ProcessorInterruptDisable,
gm_ProcessorInterruptEnable, gm_ProcessorWaitForIrq

gm_ProcessorInterruptDisable
Prototype

 gm_ProcessorInterruptDisable;
Description

The gm_ProcessorInterruptDisable macro disables GeMRTOS processor interrupt in the GeMRTOS
controller.
Parameters

The gm_ProcessorInterruptDisable macro does not accept any parameters.
Returns

The gm_ProcessorInterruptDisable macro does not return any value.
See also
gm_ProcessorHalt, gm_ProcessorId, gm_ProcessorInterrupt, gm_ProcessorInterruptEnable,
gm_ProcessorWaitForIrq

gm_ProcessorInterruptEnable
Prototype

 gm_ProcessorInterruptEnable;
Description

The gm_ProcessorInterruptEnable macro enables processor interrupts in the GeMRTOS controller.

GEMRTOS: Multiprocessor RTOS – Reference Design - 15

Parameters
The gm_ProcessorInterruptEnable macro does not accept any parameters.

Returns
The gm_ProcessorInterruptEnable macro does not return any value.

See also
gm_ProcessorHalt, gm_ProcessorId, gm_ProcessorInterrupt, gm_ProcessorInterruptDisable,
gm_ProcessorWaitForIrq

gm_ProcessorWaitForIrq
Prototype

 gm_ProcessorWaitForIrq(IRQ_mask);
Description

The gm_ProcessorWaitForIrq macro halts the processor until an interrupt occurs on one of the
specified masked IRQs. This function is useful for enabling the processor to wait for specific
interrupt events.
Parameters

The gm_ProcessorWaitForIrq macro accepts the following parameter:
• IRQ_mask:A mask of the DIRQs that the processor will wait for. This mask specifies which

interrupts should wake the processor from its halted state. The interrupt should be disabled
in order to be used to wake up the processor.

Returns
The gm_ProcessorWaitForIrq macro does not return any value.

See also
gm_ProcessorHalt, gm_ProcessorId, gm_ProcessorInterrupt, gm_ProcessorInterruptDisable,
gm_ProcessorInterruptEnable

gm_SchedulingListExclusionSectionEnter
Prototype

 gm_SchedulingListExclusionSectionEnter;
Description

The gm_SchedulingListExclusionSectionEnter macro set temporalely the scheduling list exclusion
parameter equal to 1 in order to avoid any other task to execute the following critial code. If another
processor placed the exclusion before, then the task is suspended until the task executing the
critical code restore the scheduling list exclusion parameter to its original value.
Parameters

The gm_SchedulingListExclusionSectionEnter macro does not require any parameters.
Returns

The gm_SchedulingListExclusionSectionEnter macro returns control to the calling function when
the exclusion parameter is set to 1.
See also
gm_ProcessorId, gm_ProcessorInterrupt, gm_ProcessorInterruptDisable,
gm_ProcessorInterruptEnable, gm_ProcessorWaitForIrq, gm_SchedulingListExclusionSectionExit,

GEMRTOS: Multiprocessor RTOS – Reference Design - 16

gu_SchedulingListAssociateProcessor, gu_SchedulingListAssociateTask, gu_SchedulingListCreate,
gu_SchedulingListExclusionSet

gm_SchedulingListExclusionSectionExit
Prototype

 gm_SchedulingListExclusionSectionExit;
Description

The gm_SchedulingListExclusionSectionExit macro restores the exclusion parameter of the
scheduling list previous to the execution of gm_SchedulingListExclusionSectionEnter. It should
executed when the critical code ends. It also enables the processor interrupt in the GeMRTOS
controller.
Parameters

The gm_SchedulingListExclusionSectionExit macro does not require any parameters.
Returns

The gm_SchedulingListExclusionSectionExit macro returns control to the calling function when
the exclusion parameter is set to 1.
See also
gm_ProcessorId, gm_ProcessorInterrupt, gm_ProcessorInterruptDisable,
gm_ProcessorInterruptEnable, gm_ProcessorWaitForIrq, gm_SchedulingListExclusionSectionEnter,
gu_SchedulingListAssociateProcessor, gu_SchedulingListAssociateTask, gu_SchedulingListCreate,
gu_SchedulingListExclusionSet

gu_SchedulingListAssociateProcessor
Prototype

 G_INT32 gu_SchedulingListAssociateProcessor(GS_LCB *plcb, G_INT32 CPUID, G_INT32
priority);
Description

The gu_SchedulingListAssociateProcessor function associates a system processor with a
specified scheduling list. The priority is assigned to the association between the processor and the
scheduling list. When tasks are ready to execute, the processor will select and execute the task
from the highest priority scheduling list that it is associated with. The association with the lowest
numerical value indicates the highest priority, ensuring that tasks in the most critical scheduling
lists are prioritized for execution.
Parameters

The following parameters are required for the gu_SchedulingListAssociateProcessor function:
• plcb: A pointer to the GS_LCB structure representing the scheduling list to be associated

with the processor.

• CPUID: The ID of the processor to be associated with the scheduling list.

• priority: The priority level for the association. A lower value indicates a higher priority, and
the processor will first search the scheduling lists associated with the highest priority tasks
that are ready to execute.

GEMRTOS: Multiprocessor RTOS – Reference Design - 17

Returns
The gu_SchedulingListAssociateProcessor function returns G_TRUE if the association is

successful. It returns G_FALSE if the association fails.
See also
gm_SchedulingListExclusionSectionEnter, gm_SchedulingListExclusionSectionExit,
gu_SchedulingListAssociateTask, gu_SchedulingListCreate, gu_SchedulingListExclusionSet

gu_SchedulingListAssociateTask
Prototype

 G_INT32 gu_SchedulingListAssociateTask(struct gs_tcb *ptcb, struct gs_lcb *plcb);
Description

The gu_SchedulingListAssociateTask function assigns a task to a specific scheduling list. Once
assigned, the task will be scheduled according to the priority discipline defined for that scheduling
list.
Parameters

The function accepts two parameters:
• ptcb: A pointer to the GS_TCB structure representing the task to be assigned.

• plcb: A pointer to the GS_LCB structure representing the scheduling list to which the task
should be added.

Returns
The gu_SchedulingListAssociateTask function returns G_TRUE if the task was successfully

assigned to the scheduling list, and G_FALSE otherwise.
See also
gm_SchedulingListExclusionSectionEnter, gm_SchedulingListExclusionSectionExit,
gu_SchedulingListAssociateProcessor, gu_SchedulingListCreate, gu_SchedulingListExclusionSet

gu_SchedulingListCreate
Prototype

 GS_LCB *gu_SchedulingListCreate(enum lcbtype lcbtype);
Description

The gu_SchedulingListCreate function creates a new scheduling list. The type of scheduling
discipline used by the list is determined by the lcbtype parameter.
Parameters

The function accepts one parameter:
• lcbtype: An enumeration value specifying the type of scheduling list to create. This defines

the scheduling discipline that will govern task scheduling within the new scheduling list.

Returns
The gu_SchedulingListCreate function returns a pointer (GS_LCB *) to the newly created GS_LCB

structure. This pointer is essential for all subsequent operations involving this specific scheduling
list. A '(GS_LCB *) 0' return value indicates failure to create the scheduling list.

GEMRTOS: Multiprocessor RTOS – Reference Design - 18

See also
gm_SchedulingListExclusionSectionEnter, gm_SchedulingListExclusionSectionExit,
gu_SchedulingListAssociateProcessor, gu_SchedulingListAssociateTask,
gu_SchedulingListExclusionSet

gu_SchedulingListExclusionSet
Prototype

 G_INT32 gu_SchedulingListExclusionSet(GS_LCB *plcb, G_INT32 exclusion);
Description

The gu_SchedulingListExclusionSet function sets the exclusion level for a scheduling list. The
exclusion level limits the number of tasks from that list that can be simultaneously in the execution
state. This mechanism can be used for load balancing or to ensure real-time properties by
protecting against multiprocessor anomalies. Setting the exclusion to 1 can help safeguard real-
time task scheduling from anomalies within the scheduling list.
Parameters

The function accepts two parameters:
• plcb: A pointer to the GS_LCB structure of the scheduling list whose exclusion level is to be

modified.

• exclusion: An integer value that specifies the new exclusion level. A value of 1 ensures that
multiple tasks from the scheduling list do not run concurrently on different processors.
Values between 2 and the number of processors assigned to the scheduling list determine
the number of tasks that can execute simultaneously on different processors. Additionally,
values exceeding the number of processors assigned to the scheduling list will have no
effect.

Returns
The function returns a G_TRUE.

See also
gm_SchedulingListExclusionSectionEnter, gm_SchedulingListExclusionSectionExit,
gu_SchedulingListAssociateProcessor, gu_SchedulingListAssociateTask, gu_SchedulingListCreate

gu_SemaphoreCreate
Prototype

 G_RCB *gu_SemaphoreCreate(int initial_count);
Description

The gu_SemaphoreCreate function creates a new semaphore resource. The semaphore is
implemented using a G_RCB structure extended with fields from a T_SEMAPHORE_RESOURCE
structure. The created semaphore includes event lists for tasks waiting to acquire the semaphore
and tasks that currently hold the semaphore. Tasks requesting the semaphore and encountering a
blocking condition (semaphore already acquired) will add themselves to the waiting list. This
function can be called from either the main application code or from within a task; however, if

GEMRTOS: Multiprocessor RTOS – Reference Design - 19

called within a task, it must be called before any semaphore request or release operations are
performed, or an error will result.
Parameters

The function takes one parameter:
• initial_count: An integer specifying the initial count of the semaphore. This value

determines the number of tasks that can simultaneously acquire the semaphore. A value of
1 creates a binary semaphore.

Returns
The gu_SemaphoreCreate function returns a pointer (G_RCB *) to the G_RCB structure that

implements the semaphore resource. This pointer is used in all subsequent semaphore operations.
A NULL pointer is returned if there is insufficient memory to create the semaphore. The return value
should always be checked for errors.
See also
gu_SemaphorePost, gu_SemaphoreWait

gu_SemaphorePost
Prototype

 G_INT32 gu_SemaphorePost(G_RCB *presource);
Description

The gu_SemaphorePost function releases a semaphore previously acquired by the currently
executing task. If tasks are waiting to acquire the semaphore, the highest-priority waiting task will
be granted the semaphore. If no tasks are waiting, the semaphore's internal count is incremented.
Parameters

The function accepts one parameter:
• presource: A pointer to the G_RCB structure representing the semaphore resource. This

pointer was returned by the gu_SemaphoreCreate function.

Returns
The gu_SemaphorePost function returns G_TRUE if the semaphore was successfully released, and

G_FALSE otherwise.
See also
gu_SemaphoreCreate, gu_SemaphoreWait

gu_SemaphoreWait
Prototype

 G_INT32 gu_SemaphoreWait(G_RCB *presource, int blocking);
Description

The gu_SemaphoreWait function attempts to acquire a semaphore resource. If the semaphore's
current count is greater than 0, the semaphore is granted to the calling task, and the count is
decremented. If the count is 0, the behavior depends on the blocking parameter: if blocking is
G_TRUE, the task is suspended until the semaphore becomes available; if blocking is G_FALSE, the
function returns immediately without blocking. When blocking, the task's waiting priority is
determined by its ready priority.

GEMRTOS: Multiprocessor RTOS – Reference Design - 20

Parameters
The function uses the following parameters:

• presource: A pointer to the G_RCB structure representing the semaphore resource, as
returned by gu_SemaphoreCreate.

• blocking: An integer flag. If G_TRUE, the task blocks until the semaphore is available; if
G_FALSE, the function returns immediately if the semaphore is unavailable.

Returns
The gu_SemaphoreWait function returns G_TRUE if the semaphore was granted to the task, and

G_FALSE when the semaphore was unavailable and blocking was G_FALSE.
See also
gu_SemaphoreCreate, gu_SemaphorePost

gu_SignalCreate
Prototype

 GS_SCB *gu_SignalCreate(enum scbtype Type, G_INT32 Priority, void *pxcb, void *Signal_Code,
void *Signal_Arg);
Description

The gu_SignalCreate function creates a signal of a specified type and associates it with a task or
other system entity. The signal's priority determines its execution order when multiple signals are
pending.
Parameters

The function takes the following parameters:
• Type: An enumeration value specifying the type of signal to create (e.g.,

G_SCBType_TCB_ABORTED).

• Priority: An integer representing the priority of the signal. Higher priority signals are
executed before lower priority signals when multiple signals are pending.

• pxcb: A pointer to a control structure. This structure could represent various system
entities like tasks, resources, processors, or events, to which the signal is linked.

• Signal_Code: A pointer to the function that implements the signal's behavior (the signal
handler).

• Signal_Arg: A pointer to an argument that will be passed to the Signal_Code function when
the signal is executed.

Returns
The gu_SignalCreate function returns a pointer to the newly created GS_SCB structure. A NULL

return indicates failure.
See also
gu_SignalDestroy

GEMRTOS: Multiprocessor RTOS – Reference Design - 21

gu_SignalDestroy
Prototype

 G_INT32 gu_SignalDestroy(GS_SCB *pscb);
Description

The gu_SignalDestroy function removes a signal from a control block. This disassociates the signal
from its associated task or system entity, preventing further execution of the signal's handler.
Parameters

The function accepts one parameter:
• pscb: A pointer to the GS_SCB structure representing the signal to be removed.

Returns
The gu_SignalDestroy function returns G_TRUE if the signal was successfully removed, and

G_FALSE otherwise.
See also
gu_SignalCreate

gm_SystemTimePrescaleGet
Prototype

 G_INT64 time = gm_SystemTimePrescaleGet;
Description

The gm_SystemTimePrescaleGet macro returns the time prescale. This prescale is used to obtaine
the system time unit from the system clock.
Parameters

The gm_SystemTimePrescaleGet macro has no parameter.
Returns

The gm_SystemTimePrescaleGet macro returns the time prescale.
See also
gm_SystemTimePrescaleSet, gm_SystemTotalTimeGet, gm_WriteOutputs, gu_fprintf, gu_printf

gm_SystemTimePrescaleSet
Prototype

 gm_SystemTimePrescaleSet(scale);
Description

gm_SystemTimePrescaleSet sets the system clock prescale to get the system time unitbuf
The gm_SystemTimePrescaleSet macro sets the system clock prescale to get the system time unit.
By default, the prescale is set to configure a 10MHz frecuency for system time units.
Parameters

The gm_SystemTimePrescaleSet has one parameter:
• scale:The prescale configuration.

Returns
The gm_SystemTimePrescaleSet macro does not return any value.

GEMRTOS: Multiprocessor RTOS – Reference Design - 22

See also
gm_SystemTimePrescaleGet, gm_SystemTotalTimeGet, gm_WriteOutputs, gu_fprintf, gu_printf

gm_SystemTotalTimeGet
Prototype

 G_INT64 time = gm_SystemTotalTimeGet;
Description

gm_SystemTotalTimeGet returns the total system time. It is the time in non frozen mode plus the
time in frozen mode.
Parameters

The gm_SystemTotalTimeGet macro has no parameter. It has to be noted that temporal
constraints (deadline, period) are related to system time, obtained using the gm_SystemTimeGet
macro, which is the time in non frozen mode.
Returns

The gm_SystemTotalTimeGet macro returns the total system time.
See also
gm_SystemTimePrescaleGet, gm_SystemTimePrescaleSet, gm_WriteOutputs, gu_fprintf, gu_printf

gm_WriteOutputs
Prototype

 gm_WriteOutputs;
Description

The gm_WriteOutputs macro transfer the data input to the gemrtos_phy output conduit of
GeMRTOS controller.
Parameters

The gm_WriteOutputs macro requires the following parameter:
• data:Data to be transfered the the gemrtos_phy output conduit of GeMRTOS controller.

Returns
The gm_WriteOutputs macro does not return any value..

See also
gm_SystemTimePrescaleGet, gm_SystemTimePrescaleSet, gm_SystemTotalTimeGet, gu_fprintf,
gu_printf

gu_fprintf
Prototype

 void gu_fprintf(char *format, ...);
Description

The gu_fprintf function formats text and writes it to standard error output (stderr).
Parameters

The following parameter is required for the gu_fprintf function:

GEMRTOS: Multiprocessor RTOS – Reference Design - 23

• format: A string that may contain format specifiers like d, s, etc., which control the
formatting of subsequent arguments.

Returns
The gu_fprintf function does not return any value.

See also
gm_SystemTimePrescaleGet, gm_SystemTimePrescaleSet, gm_SystemTotalTimeGet,
gm_WriteOutputs, gu_printf

gu_printf
Prototype

 void gu_printf(char *format, ...);
Description

The gu_printf function formats text and writes it to standard output.
Parameters

The following parameter is required for the gu_printf function:
• format: A string that may contain format specifiers like d, s, etc., which control the

formatting of subsequent arguments.

Returns
The gu_printf function does not return any value.

See also
gm_SystemTimePrescaleGet, gm_SystemTimePrescaleSet, gm_SystemTotalTimeGet,
gm_WriteOutputs, gu_fprintf

gu_TaskCreate
Prototype

 void *gu_TaskCreate(void *TaskCode, void *p_arg, char *format, ...);
Description

The gu_TaskCreate function creates a task with default settings and returns a pointer to its
GS_TCB structure. Task parameters can be modified before creation by adjusting default settings or
after creation using task-related functions. While the function requires only TaskCode and p_arg, it
allows for optional task description formatting using a printf-style format string and arguments.
Parameters

The function uses the following parameters:
• TaskCode: A pointer to the function that implements the task's code (the task's entry

point). It is the name of the function that implements the task code.

• p_arg: A pointer to an argument that will be passed to the TaskCode function each time the
task is invoked. This is a void * and can be cast to other types within the task code.

• format: A format string, similar to printf, used to create a description string for the task (up
to G_TCB_DESCRIPTION_LENGTH characters). This string can contain format specifiers
that are replaced by subsequent arguments.

GEMRTOS: Multiprocessor RTOS – Reference Design - 24

Returns
The gu_TaskCreate function returns a pointer to the GS_TCB structure of the newly created task.

This pointer should be used in all subsequent calls related to that task. A NULL return indicates
task creation failure.
See also
gu_TaskDelay, gu_TaskDelayTime, gu_TaskGetCurrentTCB, gu_TaskKill, gu_TaskPeriodSet,
gu_TaskReadyPrioritySet, gu_TaskResume, gu_TaskRunPrioritySet, gu_TaskStartWithOffset,
gu_TaskSuspend, gu_TaskTypeSet

gu_TaskDelay
Prototype

 G_INT32 gu_TaskDelay(G_INT32 hours, G_INT32 minutes, G_INT32 seconds, G_INT32 ms);
Description

The gu_TaskDelay function suspends the execution of the currently running task for a specified
time interval. This function is useful within the infinite loop of a task to create periodic behavior.
Parameters

The function uses the following parameters to define the sleep interval:
• hours: The number of hours to sleep

• minutes: The number of minutes to sleep.

• seconds: The number of seconds to sleep.

• ms: The number of milliseconds to sleep.

Returns
The gu_TaskDelay function always returns G_TRUE.

See also
gu_TaskCreate, gu_TaskDelayTime, gu_TaskGetCurrentTCB, gu_TaskKill, gu_TaskPeriodSet,
gu_TaskReadyPrioritySet, gu_TaskResume, gu_TaskRunPrioritySet, gu_TaskStartWithOffset,
gu_TaskSuspend, gu_TaskTypeSet

gu_TaskDelayTime
Prototype

 G_INT32 gu_TaskDelayTime(gt_time ticks);
Description

The gu_TaskDelayTime function suspends the execution of the current task for a specified number
of system clock ticks. This function provides a more direct way to specify sleep duration compared
to gu_TaskDelay, using the system's time units directly.
Parameters

The function takes one parameter:
• ticks: The number of system clock ticks for which the task should sleep.

GEMRTOS: Multiprocessor RTOS – Reference Design - 25

Returns
The gu_TaskDelayTime function always returns G_TRUE.

See also
gu_TaskCreate, gu_TaskDelay, gu_TaskGetCurrentTCB, gu_TaskKill, gu_TaskPeriodSet,
gu_TaskReadyPrioritySet, gu_TaskResume, gu_TaskRunPrioritySet, gu_TaskStartWithOffset,
gu_TaskSuspend, gu_TaskTypeSet

gu_TaskGetCurrentTCB
Prototype

 GS_TCB *gu_TaskGetCurrentTCB(void);
Description

The gu_TaskGetCurrentTCB function retrieves a pointer to the Task Control Block (GS_TCB) of the
currently executing task.
Parameters

This function takes no parameters.
Returns

The gu_TaskGetCurrentTCB function returns a pointer to the GS_TCB structure of the currently
running task.
See also
gu_TaskCreate, gu_TaskDelay, gu_TaskDelayTime, gu_TaskKill, gu_TaskPeriodSet,
gu_TaskReadyPrioritySet, gu_TaskResume, gu_TaskRunPrioritySet, gu_TaskStartWithOffset,
gu_TaskSuspend, gu_TaskTypeSet

gu_TaskKill
Prototype

 G_INT32 gu_TaskKill(GS_TCB *ptcb);
Description

The gu_TaskKill function terminates a task and releases all associated resources, returning them
to the free lists.
Parameters

The function takes one parameter:
• ptcb: A pointer to the GS_TCB structure of the task to be terminated.

Returns
The gu_TaskKill function always returns G_TRUE.

See also
gu_TaskCreate, gu_TaskDelay, gu_TaskDelayTime, gu_TaskGetCurrentTCB, gu_TaskPeriodSet,
gu_TaskReadyPrioritySet, gu_TaskResume, gu_TaskRunPrioritySet, gu_TaskStartWithOffset,
gu_TaskSuspend, gu_TaskTypeSet

GEMRTOS: Multiprocessor RTOS – Reference Design - 26

gu_TaskPeriodSet
Prototype

 G_INT32 gu_TaskPeriodSet(struct gs_tcb *ptcb, unsigned int hours, unsigned int minutes,
unsigned int seconds, unsigned int ms);
Description

The gu_TaskPeriodSet function sets the period for the next invocation of a task. The current task
invocation period remains unaffected; the new period will apply only to subsequent invocations.
Parameters

The function uses the following parameters:
• ptcb: A pointer to the GS_TCB structure of the task whose period is to be set.

• hours: The number of hours in the new period.

• minutes: The number of minutes in the new period.

• seconds: The number of seconds in the new period.

• ms: The number of milliseconds in the new period.

Returns
The gu_TaskPeriodSet function always returns G_TRUE.

See also
gu_TaskCreate, gu_TaskDelay, gu_TaskDelayTime, gu_TaskGetCurrentTCB, gu_TaskKill,
gu_TaskReadyPrioritySet, gu_TaskResume, gu_TaskRunPrioritySet, gu_TaskStartWithOffset,
gu_TaskSuspend, gu_TaskTypeSet

gu_TaskReadyPrioritySet
Prototype

 G_INT32 gu_TaskReadyPrioritySet(struct gs_tcb *ptcb, G_INT64 priority);
Description

The gu_TaskReadyPrioritySet function sets the ready priority of a task. This priority determines the
task's position in the ready queue and influences its scheduling order. Note that larger values of
priority represent lower priority; smaller values indicate higher priority.
Parameters

The function takes two parameters:
• ptcb: A pointer to the GS_TCB structure of the task whose ready priority is to be set.

• priority: A G_INT64 value representing the new ready priority for the task. Larger values
indicate lower priority; smaller values indicate higher priority.

Returns
The gu_TaskReadyPrioritySet function always returns G_TRUE.

See also
gu_TaskCreate, gu_TaskDelay, gu_TaskDelayTime, gu_TaskGetCurrentTCB, gu_TaskKill,
gu_TaskPeriodSet, gu_TaskResume, gu_TaskRunPrioritySet, gu_TaskStartWithOffset,
gu_TaskSuspend, gu_TaskTypeSet

GEMRTOS: Multiprocessor RTOS – Reference Design - 27

gu_TaskResume
Prototype

 G_INT32 gu_TaskResume(GS_TCB *ptcb);
Description

The gu_TaskResume function resumes a task that is currently in a waiting state.
Parameters

The function takes one parameter:
• ptcb: A pointer to the GS_TCB structure of the task to be resumed.

Returns
The gu_TaskResume function returns G_TRUE if the task was successfully resumed and G_FALSE

otherwise.
See also
gu_TaskCreate, gu_TaskDelay, gu_TaskDelayTime, gu_TaskGetCurrentTCB, gu_TaskKill,
gu_TaskPeriodSet, gu_TaskReadyPrioritySet, gu_TaskRunPrioritySet, gu_TaskStartWithOffset,
gu_TaskSuspend, gu_TaskTypeSet

gu_TaskRunPrioritySet
Prototype

 G_INT32 gu_TaskRunPrioritySet(struct gs_tcb *ptcb, G_INT64 priority);
Description

The gu_TaskRunPrioritySet function sets the run-time priority of a task. This priority determines the
task's execution order when it is running. Larger values of priority represent lower priority; smaller
values represent higher priority.
Parameters

The function takes these parameters:
• ptcb: A pointer to the GS_TCB structure of the task whose run-time priority is to be set.

• priority: A G_INT64 value specifying the new run-time priority. Larger values mean lower
priority, and smaller values mean higher priority.

Returns
The gu_TaskRunPrioritySet function always returns G_TRUE.

See also
gu_TaskCreate, gu_TaskDelay, gu_TaskDelayTime, gu_TaskGetCurrentTCB, gu_TaskKill,
gu_TaskPeriodSet, gu_TaskReadyPrioritySet, gu_TaskResume, gu_TaskStartWithOffset,
gu_TaskSuspend, gu_TaskTypeSet

GEMRTOS: Multiprocessor RTOS – Reference Design - 28

gu_TaskStartWithOffset
Prototype

 G_INT32 gu_TaskStartWithOffset(GS_TCB *ptcb, unsigned int hours, unsigned int minutes,
unsigned int seconds, unsigned int ms);
Description

The gu_TaskStartWithOffset function starts a previously created task for execution, allowing the
specification of a time offset for the task's first execution. This offset determines when the task will
begin running relative to the time the function is called.
Parameters

The function uses the following parameters:
• ptcb: A pointer to the GS_TCB structure of the task to be started (obtained from

gu_TaskCreate during task creation).

• hours: The number of hours in the starting offset.

• minutes: The number of minutes in the starting offset.

• seconds: The number of seconds in the starting offset.

• ms: The number of milliseconds in the starting offset.

Returns
The gu_TaskStartWithOffset function returns G_TRUE upon successful task startup.

See also
gu_TaskCreate, gu_TaskDelay, gu_TaskDelayTime, gu_TaskGetCurrentTCB, gu_TaskKill,
gu_TaskPeriodSet, gu_TaskReadyPrioritySet, gu_TaskResume, gu_TaskRunPrioritySet,
gu_TaskSuspend, gu_TaskTypeSet

gu_TaskSuspend
Prototype

 G_INT32 gu_TaskSuspend(GS_TCB *ptcb);
Description

The gu_TaskSuspend function suspends a task, changing its state to waiting.
Parameters

The function takes one parameter:
• ptcb: A pointer to the GS_TCB structure of the task to be suspended.

Returns
The gu_TaskSuspend function always returns G_TRUE.

See also
gu_TaskCreate, gu_TaskDelay, gu_TaskDelayTime, gu_TaskGetCurrentTCB, gu_TaskKill,
gu_TaskPeriodSet, gu_TaskReadyPrioritySet, gu_TaskResume, gu_TaskRunPrioritySet,
gu_TaskStartWithOffset, gu_TaskTypeSet

GEMRTOS: Multiprocessor RTOS – Reference Design - 29

gu_TaskTypeSet
Prototype

 G_INT32 gu_TaskTypeSet(struct gs_tcb *ptcb, enum tcbtype type);
Description

The gu_TaskTypeSet function sets the type of a task. The valid task types are
G_TCBType_PERIODIC and G_TCBType_OneShot.
Parameters

The function takes these parameters:
• ptcb: A pointer to the GS_TCB structure of the task whose type is to be modified.

• type: The type must be either G_TCBType_PERIODIC or G_TCBType_OneShot. Any other
value will result in failure.

Returns
The gu_TaskTypeSet function returns G_TRUE if the task type was successfully set, and G_FALSE

otherwise.
See also
gu_TaskCreate, gu_TaskDelay, gu_TaskDelayTime, gu_TaskGetCurrentTCB, gu_TaskKill,
gu_TaskPeriodSet, gu_TaskReadyPrioritySet, gu_TaskResume, gu_TaskRunPrioritySet,
gu_TaskStartWithOffset, gu_TaskSuspend

gu_TriggerCreate
Prototype

 G_RCB *gu_TriggerCreate(int IRQ_ID);
Description

The function creates a trigger resource. It accepts an IRQ_ID argument to allow associating the
trigger resource with a hardware interrupt.
Parameters

The trigger is created and initilized with the following paramenters:
• IRQ_ID: The IRQ_ID argument specifies the number of the hardware interrupt to associate

with the trigger resource. Setting this argument to -1 indicates that no association with a
hardware interrupt is desired.

Returns
The gu_TriggerCreate function returns a pointer to the newly created trigger resource. This pointer

must be used to reference the trigger resource in all subsequent trigger-related functions.
See also
gu_TriggerDisable, gu_TriggerDisableHook, gu_TriggerEnable, gu_TriggerEnableHook,
gu_TriggerRegisterTask, gu_TriggerRelease, gu_TriggerWait

gu_TriggerDisable
Prototype

 G_INT32 gu_TriggerDisable(unsigned int IRQ_ID);

GEMRTOS: Multiprocessor RTOS – Reference Design - 30

Description
The gu_TriggerDisable function disables the trigger resource, preventing it from being activated

using either the gu_TriggerRelease function or the associated hardware interrupt.
Parameters

The disabling of the trigger resource is performed with the following parameter:
• IRQ_ID: This parameter represents either the IRQ number of the hardware interrupt

associated with the trigger resource or the pointer to the trigger resource returned by the
gu_TriggerCreate function. If the IRQ_ID is a pointer, it should be cast to an integer (int) for
use within the function.

Returns
The function returns G_TRUE if the operation was successful.

See also
gu_TriggerCreate, gu_TriggerDisableHook, gu_TriggerEnable, gu_TriggerEnableHook,
gu_TriggerRegisterTask, gu_TriggerRelease, gu_TriggerWait

gu_TriggerDisableHook
Prototype

 G_INT32 gu_TriggerDisableHook(int IRQ_ID, void *code_callback, void *p_arg);
Description

The gu_TriggerDisableHook function sets the hook function to be called after the trigger resource
is disabled.
Parameters

The disable hook function is specified using the following parameters:
• IRQ_ID: This parameter represents either the IRQ number of the hardware interrupt

associated with the trigger resource or the pointer to the trigger resource returned by the
gu_TriggerCreate function. If the IRQ_ID is a pointer, it should be cast to an integer (int) for
use within the function.

• code_callback: This parameter defines the name of the function to be executed as a hook
function when the trigger resource is disabled.

• p_arg: This parameter represents the value to be passed to the hook function when it is
called. This allows the same hook function to be used for multiple trigger resources with
different parameter values.

Returns
The function returns G_TRUE if the disable hook function was successfully configured; otherwise,

it returns G_FALSE.
See also
gu_TriggerCreate, gu_TriggerDisable, gu_TriggerEnable, gu_TriggerEnableHook,
gu_TriggerRegisterTask, gu_TriggerRelease, gu_TriggerWait

GEMRTOS: Multiprocessor RTOS – Reference Design - 31

gu_TriggerEnable
Prototype

 G_INT32 gu_TriggerEnable(int IRQ_ID);
Description

The gu_TriggerEnable function enables the trigger resource, allowing it to be activated using either
the gu_TriggerRelease function or the associated hardware interrupt.
Parameters

The enabling of the trigger resource is performed with the following parameters:
• IRQ_ID: This parameter represents either the IRQ number of the hardware interrupt

associated with the trigger resource or the pointer to the trigger resource returned by the
gu_TriggerCreate function. If the IRQ_ID is a pointer, it should be cast to an integer (int) for
use within the function.

Returns
The function returns G_TRUE if the operation was successful.

See also
gu_TriggerCreate, gu_TriggerDisable, gu_TriggerDisableHook, gu_TriggerEnableHook,
gu_TriggerRegisterTask, gu_TriggerRelease, gu_TriggerWait

gu_TriggerEnableHook
Prototype

 G_INT32 gu_TriggerEnableHook(int IRQ_ID, void *code_callback, void *p_arg);
Description

The gu_TriggerEnableHook sets the hook function to be called before the trigger resource is
enabled.
Parameters

The gu_TriggerEnableHook function requires the following paramenters:
• IRQ_ID: This parameter represents either the IRQ number of the hardware interrupt

associated with the trigger resource or the pointer to the trigger resource returned by the
gu_TriggerCreate function. If the IRQ_ID is a pointer, it should be cast to an integer (int) for
use within the function.

• code_callback: This parameter defines the name of the function to be executed as a hook
function when the trigger resource is enabled.

• p_arg: This parameter represents the value to be passed to the hook function when it is
called. This allows the same hook function to be used for multiple trigger resources with
different parameter values.

Returns
The function returns G_TRUE if the enable hook function was successfully configured; otherwise,

it returns G_FALSE.
See also
gu_TriggerCreate, gu_TriggerDisable, gu_TriggerDisableHook, gu_TriggerEnable,
gu_TriggerRegisterTask, gu_TriggerRelease, gu_TriggerWait

GEMRTOS: Multiprocessor RTOS – Reference Design - 32

gu_TriggerRegisterTask
Prototype

 G_INT32 gu_TriggerRegisterTask(struct gs_tcb *ptcb, G_INT32 irq_nbr);
Description

The gu_TriggerRegisterTask function associates a task with a trigger resource.
Parameters

The task registration with the trigger resource is performed using the following parameters:
• ptcb: This is a pointer to the GS_TCB structure of the task to be associated with the trigger

resource.

• irq_nbr: This is either the IRQ number of the hardware interrupt associated with the trigger
or the pointer to the trigger resource returned by the gu_TriggerCreate function, cast to an
integer (int).

Returns
The gu_TriggerRegisterTask function returns G_TRUE if the task registration with the trigger

resource is successful; otherwise, it returns G_FALSE.
See also
gu_TriggerCreate, gu_TriggerDisable, gu_TriggerDisableHook, gu_TriggerEnable,
gu_TriggerEnableHook, gu_TriggerRelease, gu_TriggerWait

gu_TriggerRelease
Prototype

 G_INT32 gu_TriggerRelease(int irq_nbr);
Description

The function activates a trigger resource. If the trigger resource is enabled and all associated tasks
are in a waiting state for the trigger, then the tasks are resumed or restarted.
Parameters

The trigger resource is activated using the following parameter:
• irq_nbr: This parameter represents either the IRQ number of the hardware interrupt

associated with the trigger resource or the pointer to the trigger resource returned by the
gu_TriggerCreate function. If the irq_nbr is a pointer, it should be cast to an integer (int) for
use within the function.

Returns
The function returns G_TRUE if the trigger resource was successfully activated; otherwise, it

returns G_FALSE.
See also
gu_TriggerCreate, gu_TriggerDisable, gu_TriggerDisableHook, gu_TriggerEnable,
gu_TriggerEnableHook, gu_TriggerRegisterTask, gu_TriggerWait

GEMRTOS: Multiprocessor RTOS – Reference Design - 33

gu_TriggerWait
Prototype

 G_INT32 gu_TriggerWait(void);
Description

The gu_TriggerWait function places the task into a waiting state for the trigger resource it is
registered to. It can be executed anywhere in the task's code, and the same effect occurs when the
task completes its execution (assuming it's not an infinite loop).
Parameters

The gu_TriggerWait function does not require any parameters, as the task automatically waits for
the trigger resource it is associated with.
Returns

The function returns G_TRUE if it is executed from within a task's code; otherwise, it returns
G_FALSE if it is executed from the main code.
See also
gu_TriggerCreate, gu_TriggerDisable, gu_TriggerDisableHook, gu_TriggerEnable,
gu_TriggerEnableHook, gu_TriggerRegisterTask, gu_TriggerRelease

GeMRTOS Control Blocks
struct g_rcb

Type Field Description

 BLOCK_HASH of the RCB: (GS_RCB *) + G_RCB_HASH. More...

 Type of resource control block. More...

 Pointer to linked list of waiting events of this event. More...

 Pointer to the linked highest priority event. More...

 Pointer to link resources in free list. More...

 Pointer to the Linked list of signals. More...

};

 is the semaphore resource structure More...

 is the queue resource, defined in mq.h More...

 is the trigger resource, defined in trigger.h More...

};

GEMRTOS: Multiprocessor RTOS – Reference Design - 34

struct T_QUEUE_RESOURCE
Type Field Description

G_INT32 MQ_priority_send Priority for the next ECB to send (to put last)

G_INT32 MQ_msg_seq Number of sequence of the current message

struct gs_ecb
Type Field Description

unsigned int BLOCK_HASH BLOCK_HASH of the ECB: (GS_ECB *) + G_ECB_HASH.

enum ecbstate ECBState Granted, Waiting, Free.

enum ecbtype ECBType Type of event control block.

TIMEPRIORITY ECBValue Occurrence Time of the event or Priority

struct gs_ecb * ECB_NextECB Pointer to linked list of waiting events of this event.

struct gs_ecb * ECB_PrevECB Pointer to linked list of waiting events of this event.

struct gs_tcb * ECB_AssocTCB Pointer to the task associated with the event

struct g_rcb * ECB_AssocRCB Pointer to the resource associated with the event

struct gs_ecb * ECB_NextTCBAEL Pointer to the next event of the same task.

struct gs_ecb * ECB_PrevTCBAEL Pointer to the previous event of the same task

struct gs_ecb * ECB_NextECBAEL Pointer to the event associated with this (ie timeout)

struct gs_scb * ECB_NextECBASL Pointer to the Linked list of signals.

struct gs_rrds * ECB_RRDS Pointer to the resource request structure or MCB.

struct gs_tcb
Type Field Description

unsigned int BLOCK_HASH BLOCK_HASH of the TCB: (GS_TCB *)
+ G_TCB_HASH.

enum
tcbstate

TCBState STATE of the task.

enum
tcbtype

TCBType TYPE of the task.

GEMRTOS: Multiprocessor RTOS – Reference Design - 35

Type Field Description

G_INT64 TCBReadyPriority Priority of the Task when Ready.

G_INT64 TCBRunPriority Priority when it is executed.

G_INT64 TCBPeriod Period of the task.

G_INT32 TCB_PrevExclusion Previous Exclusion if task set the
current Exclusion section (0
otherwise)

volatile
GS_STK *

TCB_StackPointer Pointer to current top of stack.

volatile
GS_STK *

TCB_StackBottom Botton Stack of the Task.

volatile
GS_STK *

TCB_StackTop Botton Stack of the Task.

volatile void
*

TCB_TaskCode Pointer to the Task Code.

volatile void
*

TCB_TaskArg Pointer to the argument of the first
call.

struct gs_tcb
*

TCB_NextTCB Pointer to next TCB in the TCB list.

struct gs_tcb
*

TCB_PrevTCB Pointer to previous TCB in the TCB list.

struct
gs_ecb *

TCB_NextTCBAEL Pointer to linked list of waiting events
of this task.

struct gs_scb
*

TCB_NextTCBASL Pointer to the Linked list of signals.

struct gs_scb
*

TCB_NextTCBPSL Pointer to signals waiting to execute.

G_INT32 TCB_AssocPCB Processor assigned this task (0 is no
assigned)

int TCB_INTNumber IRQ number if it is a ISR TCB.

struct gs_lcb
*

TCB_RDY_LCB_Index pointer to the ready list that should be
inserted

volatile
G_INT32

TCB_MTX_NESTED Count for Mutex nesting of the task.

GEMRTOS: Multiprocessor RTOS – Reference Design - 36

Type Field Description

char TCB_description
[G_TCB_DESCRIPTION_LENGTH]

ucontext_t uctx

void * uctx_stack

struct gs_lcb
Type Field Description

unsigned int BLOCK_HASH BLOCK_HASH of the LCB: (GS_LCB *) + G_LCB_HASH.

enum lcbstate LCBState State of the List Control Block.

enum lcbtype LCBType Type of the List Control Block <>

G_INT32 LCBCurrentRunning Current number of running tasks.

G_INT32 LCBExclusion Maximum number of running task (0 for no limit)

struct gs_tcb * LCB_NextTCBRUNL Pointer to the TCB list of running tasks.

struct gs_tcb * LCB_NextTCBRDYL Pointer to the TCB of the Highest Priority Task.

struct gs_lcb * LCB_NextLCBL Pointer to the next list ordered by priority.

struct gs_lcb * LCB_PrevLCBL Pointer to the next list ordered by priority.

struct gs_pcb * LCB_NextLCBFPL Next free processor for this list.

struct T_SEMAPHORE_RESOURCE
Type Field Description

G_INT32 SEM_Current_Count It is the current count of the semaphore. If it is equal to 0, no
more grants are allowed. It is initialized with the
SEM_Maximum_Count when the semaphore is created with
the gu_SemaphoreCreate function.

G_INT32 SEM_Maximum_Count It is the initial value of the SEM_Current_Count field. It is
defined for debugging purposes only, and it could be
removed.

GEMRTOS: Multiprocessor RTOS – Reference Design - 37

struct gs_scb
Type Field Description

unsigned int BLOCK_HASH BLOCK_HASH of the SCB: (GS_SCB *) + G_SCB_HASH.

enum scbstate SCBState STATE of the signal.

enum scbtype SCBType TYPE of the signal.

G_INT32 SCBPriority Priority of the SCB when it is linked.

void * SCB_TaskCode Pointer to the code of the signal.

void * SCB_TaskArg Pointer to the argument of the signal.

struct gs_scb * SCB_NextSCB Pointer to the next SCB linked.

void * SCB_AssocXCB Pointer to the data structure root of the SCBASL.

GeMRTOS Enumerations types
enum lcbtype

• GS_LCBTypeEDF: The GS_LCBTypeEDF scheduling list type implements the Earliest
Deadline First (EDF) discipline among the tasks assigned to the scheduling list. In the EDF
discipline, the earliest deadline, the highest priority. In order to maintain consistency, tasks
that are assigned to an EDF scheduled list should be of the periodic type, with the deadline
taken into account starting from the release time.

• GS_LCBTypeFP: The GS_LCBTypeFP scheduling list type implements the Fixed Priority (FP)
discipline among the tasks assigned to the scheduling list. In the FP discipline, a priority is
assigned to each task. Task priority may be modified during runtime. In order to maintain
consistency, tasks that are assigned to an FP scheduled list should not be of the infinite-
loop type without waiting for event suspension in order to avoid starving lower-priority tasks.
Only the lowest-priority task could be implemented as an infinite-loop code.

enum scbtype
• G_SCBType_TCB_ABORTED: The G_SCBType_TCB_ABORTED signal type is defined to

signaling when a task is aborted. A task aborting happens when a new release of a periodic
task takes place before the previos invokation completes. The associated abortion function
will be executed prior the execution of the next instance of the task.

• G_SCBType_FROZEN_MODE: The G_SCBType_FROZEN_MODE signal type is defined to
signaling when GeMRTOS controller enters in frozen mode.

GEMRTOS: Multiprocessor RTOS – Reference Design - 38

enum tcbtype
• G_TCBType_OneShot: The G_TCBType_OneShot task type makes the task code to be

executed just once. The task must be released once again for another execution if the task
code does not contain an infinite loop. Initialization tasks may be implemented as a
G_TCBType_OneShot task type without infinite loop in the task code. G_TCBType_OneShot
tasks are often implemented as an infinite loop to keep them running. When a task with an
infinite loop is executed, it will take as much processor time as possible. It is possible to use
different strategies to prevent one or many system tasks from being overly greedy about
processor time and starving the others: Assigning lowest priorities to tasks: in this way,
infinite-loop tasks will be executed only when the highest priority tasks are not requiring for
execution. Suspending the task until an event: the task is suspended inside the infinite loop,
waiting for an event. The events may be timed events (to execute the task regularly) or
trigger events (such as waiting for an interrupt). Reducing the task priority: the task priority
may be reduced inside the infinite loop to let the new higher-priority task be executed. This
tactic should be implemented in all the infinite-loop tasks of the scheduling list to
dynamically preserve a valid relationship among the system task priorities. Defining a
round-robin scheduling mechanism in the scheduling list: a round-robin mechanism will
execute each task during a certain interval, granting the processor access to each task in
the scheduling list.

• G_TCBType_PERIODIC: The G_TCBType_PERIODIC task type makes the task code to be
executed periodically. The period of the task is configured when the type is specified. The
period of the task and the initial offset determines the future releases times of the task. If
previous invocation of the task does not completes, then the previous invocation may be
defined to be aborted or the next release skipped. Periodic tasks are useful to meet Nyquist
and Shannon theorems in cyber-physical applications. However, if no scheduling analysis is
performed, the system may became oversaturated and the deadlines missed.

• G_TCBType_ISR: The G_TCBType_ISR task type determines that the task is associated with
a trigger resource. The G_TCBType_ISR type of the task should be set after the task is
created using the gu_TriggerRegisterTask function.

• G_TCBType_IDLE: The G_TCBType_IDLE task type determines the task that a processor
executes when no task requires for execution. The IDLE task is a GeMRTOS system task and
there is one for each system processor. By default, the G_TCBType_IDLE task turns the
processor into sleep mode in order to save energy and reduce the system bus utilization.

